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3



ACKNOWLEDGMENTS

Foremost, I am deeply indebted to my advisor Prof. Richard Woodard for his

dedicated guidance, patience and encouragement. It was a great pleasure to find

solutions for seemingly unsolvable problems after long discussions with him. Years

of interaction later, talking about physics with him became one of the most enjoyable

activities.

I would like to thank my supervisory committee members, Prof. Steven Detweiler,

Prof. James Fry, Prof. David Groisser and Prof. Pierre Sikivie for their valuable

questions and suggestions.

I am very grateful to Dr. Scott Dodelson for supervising my research at Fermilab.

The insightful and challenging questions he constantly offered me greatly broadened

my horizons in cosmology. I am also thankful to Dr. Andreas Kronfeld, the Fermilab

Fellowship director that offered me the great opportunity of working at Fermilab. I also

would like to thank my Fermilab office mates Chris Kelso, Farinaldo Queiroz and Ritoban

Thakur for many rich discussions. My thanks also go to Olivia and Kristin for greatly

simplifying the paperwork and helping me in the process of moving between UF and

Fermilab.

I would like to thank my friends at the UF Department of Physics for their friendship

and for helping me in so many ways: Jesus Escobar, Hyoungjeen Jeen, Sungsu Kim,

Inhae Kwak, Katie Leonard, Pedro Mora, Zahra Nasrollahi, Myeonghun Park, Francisco

Rojas and Minjun Son.

Finally I would like give my deepest thanks to my parents. They have always

supported me with their love and care. I would like to also thank my sisters and nephews

for cheering me up when I needed it. During my first years of graduate school, I met
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We use dimensional regularization to evaluate the one loop contribution to the

graviton self-energy from a massless, minimally coupled scalar on a locally de

Sitter background. For noncoincident points our result agrees with the stress tensor

correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the

ultraviolet divergences using the R2 and C 2 counterterms first derived by ’t Hooft

and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized

result is expressed as the sum of two transverse, 4th order differential operators

acting on nonlocal, de Sitter invariant structure functions. In this form it can be used

to quantum-correct the linearized Einstein equations so that one can study how the

inflationary production of infrared scalars affects the propagation of dynamical gravitons

and the force of gravity. We have seen that they have no effect on the propagation of

dynamical gravitons. Our computation motivates a conjecture for the first correction to

the vacuum state wave functional of gravitons. We comment as well on performing the

same analysis for the more interesting contribution from inflationary gravitons, and on

inferring one loop corrections to the force of gravity.
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CHAPTER 1
INTRODUCTION

My research involves quantum effects during primordial inflation. Primordial inflation

is a phase of accelerated expansion during the very early universe which explains why

the current universe is so homogeneous and isotropic on large scales, and why it is so

nearly spatially flat. Quantum effects are vastly strengthened during inflation because

the rapid expansion rips quantum fluctuations out of the vacuum so that they become

real particles. This is thought to be the source of the observed density perturbations.

My work concerns how the ensemble of scalars produced in this way would affect the

propagation of gravitational radiation and the force of gravity.

In the following sections, we will review what inflation is, why it enhances quantum

effects and how one can understand this enhancement as the classical response to

virtual particles. We will also discuss how reliable information from quantum general

relativity can be obtained in spite of its nonrenormalizability. This chapter closes with an

overview of my project.

1.1 Inflation

On scales above 100Mpc our universe is observed to be homogeneous and

isotropic. It also seems to have zero spatial curvature. Based on these three features

our universe can be described by the Friedmann-Robertson-Walker (FRW) metric, with

the invariant element

ds2 = −dt2 + a2(t)d~x · d~x . (1–1)

Here the coordinate t is physical time and the a(t) is called the scale factor because it

converts coordinate distance ‖~x − ~y‖ into physical distance a(t)‖~x − ~y‖.

10



There are three observable cosmological quantities that can be constructed from

the scale factor:

Red Shift z(t) ≡ a(t0)

a(t)
− 1, (1–2)

Hubble Parameter H(t) ≡ ȧ

a
, (1–3)

Deceleration parameter q(t) ≡ −aä
ȧ2
= −1− Ḣ

H2
≡= −1 + ε(t) (1–4)

where t0 is the current time. The Hubble parameter H(t) tells us the expansion rate of

the universe. The deceleration parameter measures the fractional acceleration rate ä/a

in units of the Hubble parameter (ȧ/a)2.

Inflation is defined as accelerated expansion, [1, 2]

H(t) > 0 and ( q(t) < 0 or equivalently ε < 1). (1–5)

Their current values are: Hnow = (73.8 ± 2.4)Km/s
Mpc

' 2.4 × 10−18Hz ' 10−33eV [3] and

εnow ' 0.33 ± 0.13 [4, 5]. So our universe is currently inflating. However the inflationary

epoch of relevance to my work is primordial inflation. Because the effects I study derive

from quantum gravity, they contain powers of GH2, and the current Hubble parameter

is just too small for these effects to be observable. In contrast, the latest data [5, 6]

plus the assumption of single scalar inflation imply HI . 1.7 × 1038Hz ∼ 1013GeV

with εI . 0.011 [7]. This is only about six orders of magnitude below the Planck scale,

MPl ∼ 1019GeV and that makes these effects small, but observable.

Here it is useful to comment that primordial inflation is very close to de Sitter which

has a positive constant for H and q exactly −1 (or ε = 0). This allows us to take de Sitter

space as a paradigm for primordial inflation. All my calculations concerning quantum

effects during inflation are done on Sitter background.

1.2 Understanding Quantum Effects

Quantum loop effects can be understood as the classical response to virtual

particles. For example, consider the vacuum polarization of quantum electrodynamics.
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The energy-time uncertainty principle says that virtual electro-positron pairs are created

out of the vacuum and exist for a brief period of time. If we just accept this, the vacuum

polarization is completely analogous to the phenomenon of classical polarization in

a mediuum full of charged particles. The bottom line is that if whatever increases the

number of virtual particles strengthens quantum effects. In the following subsections we

will discuss how inflation does this. We consider two aspects, the persistence time and

the emergence rate of virtual particles.

1.2.1 Uncertainty Principle during Inflation

The energy-time uncertainty principle of flat space

∆E∆t
>∼ 1 . (1–6)

says that to resolve an energy with accuracy ∆E we have to wait at least a time ∆t.

To reslove the production of a virtual pair of wave number k and mass m we have

∆E = 2
√
m2 + k2. We would not notice a violation of energy conservation provided

∆t
<∼ 1
∆E
. That is, we can take 1/∆E as the lifetime of a virtual pair.

∆t =
1

∆E
=

1

2
√
m2 + k2

. (1–7)

How would this effect change during inflation? If we consider the homogeneous,

isotropic and spatially flat geometry described in (1–1), from its spatial translation

invariance one can still label particles by constant wave numbers ~k , just as in flat space.

However, this “co-moving wave vector” ~k involves an inverse length and hence one must

multiply it by the scale factor a(t) to get the “physical wave vector” ~k/a(t). This time

dependent wave number implies the expression for (1–7) becomes an integral.∫ t+4t

t

dt ′2E(t ′,~k)
<∼ 1 . (1–8)

with E(t,~k) =
√
m2 + k2/a2(t). Note that spacetime expansion always lengthens the

time a virtual pair can exist because kphys = k/a(t) becomes smaller as a(t) grows. Just

12



as in flat space, massless particles of the same wave number live longer than massive

ones. Taking m = 0 and the de Sitter limit of the scale factor, a(t) = aIeHt we have

2k

Ha(t)
(1− e−H∆t) <∼ 1 . (1–9)

This means that massless virtual particles can live forever during inflation if they emerge

with k <∼ Ha(t).

1.2.2 Conformal Invariance

Another important factor for virtual particle creation is the rate at which virtual

particles emerge from the vacuum. It turns out the rate depends on the type of

particle. In flat space the emergence rate Γflat is constant by Poincare invariance. In an

expanding universe it will become time dependent because time translation invariance

is no longer valid. Recall now that virtual particles live longest when they are massless.

Unfortunately, almost all massless particles possess conformal invariance, which leads

to an exponential suppression of their emergence rate.

To understand this, note first that conformally invariant theories in FRW conformal

coordinates are locally identical to flat space. This becomes clear if we express the FRW

metric (1–1) in conformal coordinates,

dt = a(t)dη =⇒ ds2 = −dt2 + a2(t)d~x · d~x

= a2(t)(−dη2 + d~x · d~x ) . (1–10)

Here t is physical time and η is conformal time. In (η,~x) coordinates the homogeneous

and isotropic, spatially flat geometry looks like a conformal rescaling of flat space. One

consequence is that the emergence rate per conformal time must be the same as in flat

space, Γη = Γflat . Now just convert to physical time, we see

dN

dt
=
dη

dt

dN

dη
=
dη

dt
Γη =

Γflat
a(t)

(1–11)

13



This means that the emergence rate of virtual particles possessing conformal symmetry

is suppressed by a factor of 1/a. Therefore any conformal-invariant, massless virtual

particles with k <∼ Ha(t) can live forever but the problem is that they don’t have much

chance to emerge from the vacuum.

From this and the previous discussions, we have the conditions which leads to big

quantum effects:

• Inflationary spacetime

• Massless particles

• No conformal invariance

We have only two kinds of massless and not conformally invariant particles: MMC

scalars and gravitons, my thesis concerns the effect of the former on the latter.

1.2.3 Particle Production during Inflation

It is also useful to explicitly show the number of virtual particles grows. In this

subsection we compute the particle production rate during inflation for nonconformally

invariant particles. Consider the massless, minimally coupled scalar1 ϕ(t,~x). Its

Lagrangian density is

L = −1
2
∂µϕ∂νϕg

µν
√
−g (1–12)

Using the metric (1–1) and integrating gives the Lagrangian,

L ≡
∫
d3xL = 1

2
a3

∫
d3x ϕ̇(t,~x)ϕ̇(t,~x)− 1

2
a

∫
d3x ~∇ϕ · ~∇ϕ (1–13)

Using Parseval’s theorem ∫ ∞

−∞
f (x)g(x) =

∫ ∞

−∞

dk

2π
f̃ (k)g̃(−k) , (1–14)

and the reality condition (f (x) is real) f̃ (−k) = f̃ ∗(k) , we find

1 The result is equivalent for the gravitons, as recognized by Grishchuck[8]
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L =
1

2
a3

∫
d3k

(2π)3
˜̇ϕ(t,~k) ˜̇ϕ

∗
(t,~k)− 1

2
a

∫
d3k

(2π)3
k2ϕ̃(t,~k)ϕ̃∗(t,~k) . (1–15)

Because there is no coupling between different ~k ’s, let us consider one mode with ~k and

call it q(t). Its Lagrangian is,

L =
1

2
a3q̇2 − 1

2
k2aq2 . (1–16)

Now we notice this is the Lagrangian of a harmonic oscillator with mass m(t) = a3(t)

and frequency ω(t) = k/a(t). Because mass and frequency are time dependent there

are no stationary states but we can still construct the Hamiltonian

H = q̇
∂L

∂q̇
− L = 1

2
a3q̇2 +

1

2
k2aq2 =

1

2
m(t)q̇2 +

1

2
m(t)ω2(t)q2 . (1–17)

with the equation of motion

q̈ + 3Hq̇ +
k2

a2
q = 0 (1–18)

Solving this equation for general a(t) is not easy but for the special case of de Sitter

(a(t) = eHt and Ḣ = 0) which is relevant in our discussion, the general solution takes

the form,

q(t) = u(t)α+ u∗(t)α†, u(t, k) =
H√
2k3

[
1− ik

Ha(t)

]
e

ik
Ha(t) (1–19)

where α and α† are operators which we canonically normalize as in normal quantum

mechanics,

[α,α†] = 1 . (1–20)

We define Bunch-Davies vacuum |Ω〉 as the state with minimum energy in the distant

past. The Bunch-Davis vacuum is |Ω > is annihilated by α, α|Ω >= 0 . To find the the

number of particles which emerge with wave number k , consider the expectation value

of the energy in this state

< Ω|H(t)|Ω > =
1

2
a3(t) < Ω|q̇2(t)|Ω > +

1

2
k2a(t) < Ω|q2(t)|Ω >

=
k

a

[
1

2
+

(
Ha

2k

)2]
=
k

a

[
1

2
+ “N(t)”

]
(1–21)
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We recognize that the number of particles with wave number k grows in time as the

square of the scale factor,

N(k , t) =

(
Ha(t)

2k

)2
(1–22)

Note that the growth becomes significant for infrared wave numbers, k ≤ Ha. One

consequence of this being an infrared effect is that perturbative general relativity can be

used reliably as an effective field theory, even though it is not renormalizable. This issue

will be discussed in the next section.

1.3 Using Quantum Gravity as an Effective Field Theory

Quantum gravity is not perturbatively renormalizable [9], however, ultraviolet

divergences can always be absorbed in the sense of Bogoliubov, Parasiuk, Hepp

and Zimmerman (BPHZ) [10]. A widespread misconception exists that no valid

quantum predictions can be extracted from such an exercise. This is false: while

nonrenormalizability does preclude being able to compute everything, that is not the

same thing as being able to compute nothing. The problem with a nonrenormalizable

theory is that no physical principle fixes the finite parts of the escalating series of BPHZ

counterterms needed to absorb ultraviolet divergences, order-by-order in perturbation

theory. Hence any prediction of the theory that can be changed by adjusting the finite

parts of these counterterms is essentially arbitrary. However, loops of massless particles

make nonlocal contributions to the effective action that can never be affected by local

counterterms. These nonlocal contributions typically dominate in the infrared. Further,

they cannot be affected by whatever modification of ultraviolet physics ultimately results

in a completely consistent formalism. As long as the eventual fix introduces no new

massless particles, and does not disturb the low energy couplings of the existing ones,

the far infrared predictions of a BPHZ-renormalized quantum theory will agree with those

of its fully consistent descendant.

To see this issue more specifically, let us first recall the theorem of Bogoliubov,

Parasiuk, Hepp and Zimmerman (BPHZ) which constructs the local counterterms
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needed to absorb the ultraviolet divergences of any quantum field theory at some fixed

order in the loop expansion [10]. This applies as well for quantum general relativity

plus any matter theory, and the two one loop counterterms R2 and C 2 required for

scalars in D = 4 spacetime dimensions have long been known [9]. The problem for

quantum general relativity is that these counterterms are not present in the original

Lagrangian. We could include R2; it would add a massive, positive energy scalar particle

which poses no essential problem for the theory. However, incorporating C 2 on a

nonperturbative level would add a negative energy, spin two particle whose presence

would cause the universe to decay instantly. We must therefore treat the one loop

counterterms perturbatively, and regard them as proxies for the still unknown ultraviolet

completion of the theory.

The remaining problem with these perturbative counterterms is that we don’t know

their finite parts. Their divergent parts are fixed by the need to subtract off the infinities

one encounters in loop corrections, but nothing fixes the finite parts, and these finite

parts affect physical results, even when we only use them perturbatively. Of course

this ambiguity reflects the fact that we don’t know the ultraviolet completion of quantum

gravity. What it means is that the only reliable predictions are those for which the

arbitrary finite parts of the counterterms are unimportant.

That there are such predictions derives from two things:

• BPHZ counterterms are guaranteed to be local [10]; and

• Massless particles make nonlocal corrections to the effective field equations.

As an example, consider one loop corrections to the quantum gravitational effective

action which are quadratic in the graviton field hµν . For simplicity, let the background be

flat space, and let us agree not to worry about how the various indices are contracted.

The one loop counterterms contribute to the effective action as,

Γ1loopcterms ∼
∫
d4x ∂2h · ∂2h +O(h3) . (1–23)
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As stated, the problem with these sorts of terms is that we don’t know the numerical

coefficients which multiply them. In contrast, one loop effects from massless particles

contribute terms of the form,

Γ1loopfinite ∼
∫
d4x ∂2h · ln(−∂2) · ∂2h +O(h3) . (1–24)

Perturbative quantum general relativity makes an exact prediction for the coefficients

of these terms. Further, in the large distance regime the finite, nonlocal contributions

(1–24) dominate over the local counterterms (1–23) owing to their enhancement by the

factor of ln(−∂2), which diverges in the infrared. In momentum space ∂2 → −p2, and

the long wavelength regime is p2 ≈ 0. Then the local counterterm goes like p4, and the

nonlocal primitive effects go like p4 ln(p2). For small enough p2 the nonlocal effects are

larger, no matter how big the finite parts of the counterterms are.

It is worthwhile to review the vast body of distinguished work that has employed

to derive valid quantum effects in the long distance regime. The oldest example is the

solution of the infrared problem in quantum electrodynamics by Bloch and Nordsieck

[13], long before that theory’s renormalizability was suspected. Weinberg [14] was able

to achieve a similar resolution for quantum gravity with zero cosmological constant. The

same principle was at work in the Fermi theory computation of the long range force due

to loops of massless neutrinos by Feinberg and Sucher [15, 16]. In pure quantum gravity

Donoghue and others has applied the principles of low energy effective field theory to

compute graviton corrections to the long range gravitational force [17–23].

To summarize, as long as we consider the low energy regime, the finite quantum

corrections from the original Lagrangian can be distinguished from those of local

counterterms. In the previous subsections I discussed the virtual particles produced

during inflation. The two key facts were

1. The number of virtual particles present during a period of accelerated expansion is
vastly larger than during a phase of deceleration; and
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2. The extra virtual particles have cosmological wavelengths.

The first fact means one can get significant quantum effects; the second point means

that these effects can be computed reliably without knowing the ultraviolet completion of

quantum gravity.

1.4 Overview

The linearized equations for all known force fields do two things:

• They give the linearized force fields induced by sources; and

• They describe the propagation of dynamical particles which carry the force but are,
in principle, independent of any source.

This is the classic distinction between the constrained and unconstrained parts of a

force field. In electromagnetism it amounts to the Coulomb potential versus photons.

In gravity there is the Newtonian potential, plus its three relativistic partners, versus

gravitons.

Quantum corrections to the linearized field equations derive from how the 0-point

fluctuations of various fields in whatever background is assumed, respond to the

linearized force fields. These quantum corrections do not change the dichotomy

between constrained and unconstrained fields but they can, of course, modify classical

results. Around flat space background there is no effect, after renormalization, on the

propagation of dynamical photons or gravitons but there are small corrections to the

Coulomb and Newtonian potentials. As might be expected, the long distance effects are

greatest for the 0-point fluctuations of massless particles and they take the form required

by perturbation theory and dimensional analysis [43, 44],

(∆Φ
Φ

)
Coul.

∼ − e
2

~c
ln
( r
r0

)
,

(∆Φ
Φ

)
Newt.

∼ − ~G
c3r 2

, (1–25)

where r is the distance to the source, r0 is the point at which the renormalized charge is

defined, and the other constants have their usual meanings.
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Schrödinger was the first to suggest that the expansion of spacetime can lead

to particle production by ripping the virtual particles (which are implicit in 0-point

fluctuations) out of the vacuum [45]. Following early work by Imamura [46], the first

quantitative results were obtained by Parker [47]. He found that the effect is maximized

during accelerated expansion, and for massless particles which are not conformally

invariant [48], such as massless, minimally coupled (MMC) scalars and (as noted by

Grishchuk [8]) gravitons. This result was reviewed in the previous sections.

The de Sitter geometry is the most highly accelerated expansion consistent with

classical stability. For de Sitter background with Hubble constant H and scale factor

a(t) = eHt we have shown that the number of MMC scalars, or either polarization of

graviton, created with wave vector ~k is [49],

N(t,~k) =
(Ha(t)
2c‖~k‖

)2
. (1–26)

It is these particles which comprise the scalar and tensor perturbations produced by

inflation [50], the scalar contribution of which has been imaged [51]. Of course the same

particles also enter loop diagrams to cause an enormous strengthening of the quantum

effects caused by MMC scalars and gravitons. A number of analytic results have been

obtained for one loop corrections to the way various particles propagate on de Sitter

background and also to how long range forces act:

• In MMC scalar quantum electrodynamics, infrared photons behave as if they
had an increasing mass [52], and the charge screening very quickly becomes
nonperturbatively strong [53], but there is no big effect on scalars [54];

• For a MMC scalar which is Yukawa-coupled to a massless fermion, infrared
fermions behave as if they had an increasing mass [55] but the associated scalars
experience no large correction [56];

• For a MMC scalar with a quartic self-interaction, infrared scalars behave as if they
had an increasing mass (which persists to two loop order) [57];

• For quantum gravity minimally coupled to a massless fermion, the fermion field
strength grows without bound [58]; and
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• For quantum gravity plus a MMC scalar, the scalar shows no secular effect but its
field strength may acquire a momentum-dependent enhancement [59].

The great omission from this list is how inflationary scalars and gravitons affect gravity,

both as regards the propagation of dynamical gravitons and as regards the force of

gravity. My project represents a first step in completing the list.

One includes quantum corrections to the linearized field equation by subtracting the

integral of the appropriate one-particle-irreducible (1PI) 2-point function up against the

linearized field. For example, a MMC scalar ϕ(x) in a background metric gµν(x) whose

1PI 2-point function is −iM2(x ; x ′), would have the linearized effective field equation,

∂µ

[√
ggµν∂νϕ(x)

]
−

∫
d4x ′M2(x ; x ′)ϕ(x ′) = 0 . (1–27)

To include gravity on the list we must therefore compute the graviton self-energy, either

from MMC scalars or from gravitons, and then use it to correct the linearized Einstein

equation.

In the first part of my dissertation we evaluate the contribution from MMC scalars

which is described in chapters 2 through 4; In chapter 2 we give those of the Feynman

rules which are needed for this computation, and we describe the geometry of our

D-dimensional, locally de Sitter background. Chapter 3 derives the relatively simple form

for the D-dimensional graviton self-energy with noncoincident points. We show that this

version of the result agrees with the flat space limit [61] and with the de Sitter stress

tensor correlators recently derived by Perez-Nadal, Roura and Verdaguer [99]. Chapter

4 undertakes the vastly more difficult reorganization which must be done to isolate

the local divergences for renormalization. At the end we subtract off the divergences

with the same counterterms originally computed for this model in 1974 by ’t Hooft and

Veltman [9], and we take the unregulated limit of D = 4.

The second part of dissertation solves the linearized effective field equations to

determine quantum corrections to the propagation of gravitons. In chapter 5 we carry
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out the same calculations for flat space which also serve the correspondence limit for

the vastly more complicated de Sitter case. Chapter 6 is dedicated for the scalar one

loop correction to dynamical gravitons. Our conclusion comprises chapter 7.
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CHAPTER 2
FEYNMAN RULES

In this chapter we derive Feynman rules for the computation. We start by expressing

the full metric as

gµν = gµν + κhµν , (2–1)

where gµν is the background metric, hµν is the graviton field whose indices are raised

and lowered with the background metric, and κ2 ≡ 16πG is the loop counting parameter

of quantum gravity. Expanding the MMC scalar Lagrangian around the background

metric we get interaction vertices between the scalar and dynamical gravitons. We take

the D-dimensional locally de Sitter space as our background and introduce de Sitter

invariant bi-tensors which will be used throughout the calculation. We close this section

by providing the MMC scalar propagator on the de Sitter background.

2.1 Interaction Vertices

The Lagrangian which describes pure gravity and the interaction between gravitons

and the MMC scalar is,

L = 1

16πG

[
R − (D−1)(D−2)H2

]√
−g − 1

2
∂µϕ∂νϕg

µν
√
−g . (2–2)

where R is Ricci scalar, G is Newton’s constant and H is the Hubble constant.

Computing the one loop scalar contributions to the graviton self-energy consists

of summing the 3 Feynman diagrams depicted in Figure 2-1. The sum of these three

x x
′

+
x

+ ×
x

Figure 2-1. The one loop graviton self-energy from MMC scalars.
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diagrams has the following analytic form:

−i [µνΣρσ](x ; x ′)

=
1

2

2∑
I=1

T µναβ
I (x)

2∑
J=1

T ρσγδ
J (x ′)× ∂α∂

′
γ i4(x ; x ′)× ∂β∂

′
δi4(x ; x ′)

+
1

2

4∑
I=1

F µνρσαβ
I (x)× ∂α∂

′
β i4(x ; x ′)× δD(x − x ′)

+2

2∑
I=1

Cµνρσ
I (x)× δD(x − x ′) . (2–3)

The 3-point and 4-point vertex factors T µναβ
I and F µνρσαβ

I derive from expanding the

MMC scalar Lagrangian using (2–1),

−1
2
∂µϕ∂νϕg

µν
√
−g (2–4)

= −1
2
∂µϕ∂νϕg

µν
√

−g − κ

2
∂µϕ∂νϕ

(1
2
hgµν − hµν

)√
−g

−κ2

2
∂µϕ∂νϕ

{[1
8
h2−1
4
hρσhρσ

]
gµν−1

2
hhµν+hµρh

ρν

}√
−g +O(κ3) . (2–5)

The resulting 3-point and 4-point vertex factors are given in the Tables 1 and 2,

respectively. The procedure to get the counterterm vertex operators Cµνρσ
I (x) is given in

section 4.

Table 2-1. 3-point vertices T µναβ
I where gµν is the de Sitter background metric,

κ2 ≡ 16πG and parenthesized indices are symmetrized.
I T µναβ

I

1 − iκ
2

√
−g gµνgαβ

2 +iκ
√
−g gµ(αgβ)ν

Table 2-2. 4-point vertices F µνρσαβ
I where gµν is the de Sitter background metric,

κ2 ≡ 16πG and parenthesized indices are symmetrized.
I F µνρσαβ

I

1 − iκ2
4

√
−g gµνgρσgαβ

2 + iκ
2

2

√
−g gµ(ρgσ)νgαβ

3 + iκ
2

2

√
−g

[
gµ(αgβ)νgρσ + gµνgρ(αgβ)σ

]
4 −2iκ2

√
−g gα(µgν)(ρgσ)β
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These interaction vertices are valid for any background metric gµν . In the next

two subsections we specialize to a locally de Sitter background and give the scalar

propagator i4(x ; x ′) on it.

2.2 Working on de Sitter Space

We specify our background geometry as the open conformal coordinate submanifold

of D-dimensional de Sitter space. A spacetime point xµ = (η, x i) takes values in the

ranges

−∞ < η < 0 and −∞ < x i < +∞ . (2–6)

In these coordinates the invariant element is,

ds2 ≡ gµνdxµdxν = a2ηµνdxµdxν , (2–7)

where ηµν is the Lorentz metric and a = −1/Hη is the scale factor. The Hubble

parameter H is constant for the de Sitter space. So in terms of ηµν and a our background

metric is

gµν ≡ a2ηµν . (2–8)

De Sitter space has the maximum number of space-time symmetries in a given

dimension. For our D-dimensional conformal coordinates the 1
2
D(D + 1) de Sitter

transformations can be decomposed as follows:

• Spatial transformations - (D − 1) transformations.

η′ = η , x ′i = x i + εi . (2–9)

• Rotations - 1
2
(D − 1)(D − 2) transformations.

η′ = η , x ′i = R ijx j . (2–10)

• Dilation - 1 transformation.
η′ = kη , x ′i = kx j . (2–11)
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• Spatial special conformal transformations - (D − 1) transformations.

η′ =
η

1− 2~θ · ~x+ ‖~θ‖2 x · x
, x ′ =

x i − θix · x
1− 2~θ · ~x+ ‖~θ‖2 x · x

. (2–12)

It turns out that the MMC scalar contribution to the graviton self-energy is de Sitter

invariant. This suggests to express it in terms of the de Sitter length function y(x ; x ′),

y(x ; x ′) ≡ aa′H2
[∥∥∥~x−~x ′

∥∥∥2 − (
|η−η′|−iε

)2]
. (2–13)

Except for the factor of iε (whose purpose is to enforce Feynman boundary conditions)

the function y(x ; x ′) is closely related to the invariant length `(x ; x ′) from xµ to x ′µ,

y(x ; x ′) = 4 sin2
(1
2
H`(x ; x ′)

)
. (2–14)

With this de Sitter invariant quantity y(x ; x ′), we can form a convenient basis of de

Sitter invariant bi-tensors. Note that because y(x ; x ′) is de Sitter invariant, so too are

covariant derivatives of it. With the metrics gµν(x) and gµν(x ′), the first three derivatives

of y(x ; x ′) furnish a convenient basis of de Sitter invariant bi-tensors [54],

∂y(x ; x ′)

∂xµ
= Ha

(
yδ0µ+2a

′H∆xµ

)
, (2–15)

∂y(x ; x ′)

∂x ′ν
= Ha′

(
yδ0ν−2aH∆xν

)
, (2–16)

∂2y(x ; x ′)

∂xµ∂x ′ν
= H2aa′

(
yδ0µδ

0
ν+2a

′H∆xµδ
0
ν−2aδ0µH∆xν−2ηµν

)
. (2–17)

Here and subsequently ∆xµ ≡ ηµν(x−x ′ν).

Acting covariant derivatives generates more basis tensors, for example [54],

D2y(x ; x ′)

DxµDxν
= H2(2−y)gµν(x) , (2–18)

D2y(x ; x ′)

Dx ′µDx ′ν
= H2(2−y)gµν(x ′) . (2–19)
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The contraction of any pair of the basis tensors also produces more basis tensors [54],

gµν(x)
∂y

∂xµ
∂y

∂xν
= H2

(
4y − y 2

)
= gµν(x ′)

∂y

∂x ′µ
∂y

∂x ′ν
, (2–20)

gµν(x)
∂y

∂xν
∂2y

∂xµ∂x ′σ
= H2(2− y) ∂y

∂x ′σ
, (2–21)

gρσ(x ′)
∂y

∂x ′σ
∂2y

∂xµ∂x ′ρ
= H2(2− y) ∂y

∂xµ
, (2–22)

gµν(x)
∂2y

∂xµ∂x ′ρ
∂2y

∂xν∂x ′σ
= 4H4gρσ(x

′)− H2 ∂y

∂x ′ρ
∂y

∂x ′σ
, (2–23)

gρσ(x ′)
∂2y

∂xµ∂x ′ρ
∂2y

∂xν∂x ′σ
= 4H4gµν(x)− H2

∂y

∂xµ
∂y

∂xν
. (2–24)

Our basis tensors are naturally covariant, but their indices can of course be raised

using the metric at the appropriate point. To save space in writing this out we define

the basis tensors with raised indices as differentiation with respect to “covariant”

coordinates,

∂y

∂xµ
≡ gµν(x)

∂y

∂xν
, (2–25)

∂y

∂x ′ρ
≡ gρσ(x ′)

∂y

∂x ′σ
, (2–26)

∂2y

∂xµ∂x ′ρ
≡ gµν(x)gρσ(x ′)

∂2y

∂xν∂x ′σ
. (2–27)

2.3 Scalar Propagator on de Sitter

From the MMC scalar Lagrangian (2–2) we see that the propagator obeys

∂µ

[√
−g gµν∂ν

]
i4(x ; x ′) =

√
−g i4(x ; x ′) = iδD(x − x ′) (2–28)

Although this equation is de Sitter invariant, there is no de Sitter invariant solution for

the propagator [62], hence some of the symmetries (2–9)-(2–12) must be broken.

We choose to preserve the homogeneity and isotropy of cosmology — relations

(2–9)-(2–10) — which corresponds to what is known as the “E3” vacuum [63]. It can

be realized in terms of plane wave mode sums by making the spatial manifold TD−1,

rather than RD−1, with coordinate radius H−1 in each direction, and then using the
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integral approximation with the lower limit cut off at k = H [64]. The final result consists

of a de Sitter invariant function of y(x ; x ′) plus a de Sitter breaking part which depends

upon the scale factors at the two points [41],

i4(x ; x ′) = A
(
y(x ; x ′)

)
+ k ln(aa′) . (2–29)

Here the constant k is given as,

k ≡ H
D−2

(4π)
D
2

Γ(D−1)
Γ(D
2
)
, (2–30)

and the function A(y) has the expansion,

A(y) ≡ H
D−2

(4π)
D
2

{
Γ(D
2
)

D
2
−1

(4
y

)D
2
−1
+
Γ(D
2
+1)

D
2
−2

(4
y

)D
2
−2

−π cot
(πD
2

)Γ(D−1)
Γ(D
2
)

+

∞∑
n=1

[
1

n

Γ(n+D−1)
Γ(n+D

2
)

(y
4

)n
− 1

n−D
2
+2

Γ(n+D
2
+1)

Γ(n+2)

(y
4

)n−D
2
+2

]}
. (2–31)

The infinite series terms of A(y) vanish for D = 4, so they only need to be retained when

multiplying a potentially divergent quantity, and even then one only needs to include a

handful of them. This makes loop computations manageable.

We note that the MMC scalar propagator (2–29) has a de Sitter breaking term,

k ln(aa′). However, the one loop scalar contribution to the graviton self-energy only

involves the terms like ∂α∂
′
β i4(x ; x ′), which are de Sitter invariant,

∂α∂
′
β i∆(x ; x

′) =
∂

∂xα

{
A′(y)

∂y

∂x ′β
+ Ha′δ0β

}
= A′′(y)

∂y

∂xα
∂y

∂x ′β
+ A′(y)

∂2y

∂xα∂x ′β
. (2–32)

Another useful relation follows from the propagator equation,

(4y−y 2)A′′(y) +D(2−y)A′(y) = (D−1)k . (2–33)
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CHAPTER 3
ONE LOOP GRAVITON SELF-ENERGY

In this chapter we calculate the first two, primitive, diagrams of Figure 1. It turns

out that the contribution from the 4-point vertex (the middle diagram) vanishes in D = 4

dimensions. The contribution from two 3-point vertices (the leftmost diagram) is nonzero.

For noncoincident points it gives a relatively simple form which agrees with the flat space

limit [61] and with the de Sitter stress tensor correlator recently derived by Perez-Nadal,

Roura and Verdaguer [99].

3.1 Contribution from 4-Point Vertices

The 4-point contribution from the middle diagram of Figure 1 takes the form,

− i
[
µνΣρσ

]
4pt
(x ; x ′) ≡ 1

2

4∑
I=1

F µνρσαβ
I (x)× ∂α∂

′
β i4(x ; x ′ × δD(x−x ′) . (3–1)

Recall that the four 4-point vertices F µνρσαβ
I (x) are given in Table 2-2. Owing to the delta

function, we need the coincidence limit of the doubly differentiated propagator (2–32).

The coincidence limits of the various tensor factors follow from setting a′ = a, ∆xµ = 0

and y = 0 in relations (2–15)-(2–17),

lim
x ′→x

∂y(x ; x ′)

∂xµ
= 0 = lim

x ′→x

∂y(x ; x ′)

∂x ′ν
, (3–2)

lim
x ′→x

∂2y(x ; x ′)

∂xµ∂x ′ν
= −2H2gµν . (3–3)

Hence the coincidence limit of the doubly differentiated propagator can be expressed in

terms of A′(y) evaluated at y = 0,

lim
x ′→x

∂α∂
′
β i4(x ; x ′) = A′′(0)× 0 + A′(0)×

[
−2H2gµν

]
. (3–4)
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From the definition (2–31) of A(y), we see that A′(y) is,

A′(y) =
1

4

HD−2

(4π)
D
2

{
−Γ(D
2
)
(4
y

)D
2 −Γ(D

2
+1)

(4
y

)D
2
−1

+
∑
n=1

[
Γ(n+D−1)
Γ(n+D

2
)

(y
4

)n−1
−
Γ(n+D

2
−1)

Γ(n+2)

(y
4

)n−D
2
+1

]}
. (3–5)

Now we recall that, in dimensional regularization, any D-dependent power of zero

vanishes. Therefore, only the n = 1 term of the infinite series in (3–5) contributes to the

coincidence limit,

A′(0) =
1

4

HD−2

(4π)
D
2

Γ(D)

Γ(D
2
+ 1)

, (3–6)

and we have,

lim
x ′→x

∂α∂
′
β i4(x ; x ′) = −1

2

HD

(4π)
D
2

Γ(D)

Γ(D
2
+ 1)

gαβ . (3–7)

Substituting (3–7), and the 4-point vertices from Table 2-2, into expression (3–1)

gives,

−i
[
µνΣρσ

]
4pt
(x ; x ′)

= −1
2

HD

(4π)
D
2

Γ(D)

Γ(D
2
+1)
gαβ × iκ2

√
−g

{
− 1
4
gµνgρσgαβ +

1

2
gµ(ρgσ)νgαβ

+
1

2

[
gµ(αgβ)νgρσ + gµνgρ(αgβ)σ

]
− 2gα(µgν)(ρgσ)β

}
δD(x−x ′) , (3–8)

=
(D−4
4

) iκ2HD
(4π)

D
2

Γ(D)

Γ(D
2
+1)

√
−g

{
1

2
gµνgρσ − gµ(ρgσ)ν

}
δD(x−x ′) . (3–9)

Because the Gamma functions are finite for D = 4 dimensions so we can dispense

with dimensional regularization and set D = 4. At that point the net contribution (3–9)

vanishes.
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3.2 Contribution from 3-Point Vertices

The contribution from the leftmost diagram of Figure 1 takes the form,

−i
[
µνΣρσ

]
3pt
(x ; x ′)

=
1

2

2∑
I=1

T µναβ
I (x)

2∑
J=1

T ρσγδ
J (x ′)× ∂α∂

′
γ i4(x ; x ′)× ∂β∂

′
δi4(x ; x ′) . (3–10)

Recall from chapter 2 (section 2.2) that any de Sitter invariant bitensor can be expressed

as a linear combination of functions of y(x ; x ′) times the five basis tensors,

−i
[
µνΣρσ

]
3pt
(x ; x ′) =

√
−g

√
−g′

{
∂2y

∂xµ∂x ′(ρ

∂2y

∂x ′σ)∂xν
× α(y)

+
∂y

∂x(µ

∂2y

∂xν)∂x
′
(ρ

∂y

∂x ′σ)
× β(y) +

∂y

∂xµ

∂y

∂xν

∂y

∂x ′ρ

∂y

∂x ′σ
× γ(y)

+gµνg′ρσH4 × δ(y) +
[
gµν

∂y

∂x ′ρ

∂y

∂x ′σ
+

∂y

∂xµ

∂y

∂xν
g′ρσ

]
H2 × ε(y)

}
. (3–11)

By substituting our result (2–32) for the mixed second derivative of the scalar propagator,

along with the vertices from Table 2-1, and then making use of the contraction identities

(2–20)-(2–24), it is straightforward to obtain expressions for the five coefficient functions,

α(y) = −1
2
κ2(A′)2 , (3–12)

β(y) = −κ2A′A′′ , (3–13)

γ(y) = −1
2
κ2(A′′)2 , (3–14)

δ(y) = −1
8
κ2
{
(A′′)2(4y − y 2)2 + 2A′A′′(2− y)(4y − y 2)

+(A′)2
[
4(D−4)−(4y−y 2)

]}
, (3–15)

ε(y) =
1

4
κ2
[
(4y − y 2)(A′′)2 + 2(2−y)A′A′′ − (A′)2

]
. (3–16)

Expressions (3–12)-(3–16) for the coefficient functions have the advantage of being

exact for any dimension D, but the disadvantages of being neither very explicit nor

very simple functions of y(x ; x ′). We can obtain expressions which are both simple and
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explicit, and totally adequate for use in the D = 4 effective field equations, by noting that

each pair of terms in the infinite series part of A(y) (2–31) vanishes for D = 4 spacetime

dimensions. Therefore, it is only neceesary to retain those parts of the infinite series

which can potentially multiply a divergence. For our computation that turns out to mean

only the n = 1 terms, and we can write the two derivatives as,

A′ =
Γ(D
2
)HD−2

4(4π)
D
2

{
−
(4
y

)D
2 − D
2

(4
y

)D
2
−1

− 1
2

D

2

(D
2
+1

)(4
y

)D
2
−2

+
Γ(D)

Γ(D
2
)Γ(D

2
+1)

+
(
Irrelevant

)}
, (3–17)

A′′ =
Γ(D
2
)HD−2

16(4π)
D
2

{
D

2

(4
y

)D
2
+1

+
(D
2
−1

)D
2

(4
y

)D
2

+
1

2

(D
2
−2)D

2

(D
2
+1

)(4
y

)D
2
−1
+
(
Irrelevant

)}
. (3–18)

Substituting these expansions in (3–12)-(3–16) gives,

α =
K

25

{
−
(4
y

)D
−D

(4
y

)D−1
−D(D+1)

2

(4
y

)D−2
+

2Γ(D)

Γ(D
2
)Γ(D

2
+1)

(4
y

)D
2

+
(
Irrelevant

)}
, (3–19)

β =
K

27

{
D
(4
y

)D+1
+(D−1)D

(4
y

)D
+
1

2
(D−2)D(D+1)

(4
y

)D−1
− DΓ(D)

Γ(D
2
)Γ(D

2
+1)

(4
y

)D
2
+1

+
(
Irrelevant

)}
, (3–20)

γ =
K

211

{
−D2

(4
y

)D+2
−(D−2)D2

(4
y

)D+1
−1
2
(D2−3D−2)D2

(4
y

)D
+
(
Irrelevant

)}
, (3–21)

δ =
K

25

{
−(D2−D−4)

(4
y

)D
− (D3−5D2+4D−4)

(4
y

)D−1
− 1
2

(
D4−8D3

+19D2−28D+8
)(4
y

)D−2
− 8Γ(D)

Γ(D
2
)Γ(D

2
+1)

(4
y

)D
2

+ (Irrelevant)

}
, (3–22)
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ε =
K

28

{
(D−2)D

(4
y

)D+1
+ (D3−5D2+6D−4)

(4
y

)D
+
1

2
D
(
D3−7D2

+12D−12
)(4
y

)D−1
+

DΓ(D)

Γ(D
2
)Γ(D

2
+1)

(4
y

)D
2
+1

+ (Irrelevant)

}
. (3–23)

where the constant K is,

K ≡
κ2H2D−4Γ2(D

2
)

(4π)D
. (3–24)

3.3 Correspondence with Flat Space

An important and illuminating correspondence limit comes from taking the Hubble

constant to zero, with the conformal time going to minus infinity so as to keep the

physical time t fixed,

η = − 1
H
e−Ht = − 1

H
+ t +O(H) . (3–25)

When this is done the background geometry degenerates to flat space and we should

recover well-known results [43]. We will also see in the next chapter that the flat

space limit provides crucial guidance in how to reorganize the de Sitter result for

renormalization.

Although each independent conformal time diverges under (3–25), the conformal

coordinate separation just goes to the usual temporal separation of flat space,

∆x0 −→ t − t ′ . (3–26)

All scale factors approach unity, and the de Sitter length function goes to H2 times the

invariant interval of flat space,

y(x ; x ′) −→ H2∆x2 . (3–27)

In the flat space limit the leading behaviors of the various basis tensors are,

∂y

∂xµ
−→ 2H2∆xµ , ∂y

∂x ′ν
−→ −2H2∆xν , ∂y 2

∂xµ∂x ′ν
−→ −2H2ηµν . (3–28)
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And the leading behaviors for derivatives of the function A(y) are,

H2A′(y) −→ − 1

4π
D
2

Γ(D
2
)

(∆x2)
D
2

≡ − 1

4π
D
2

Γ(D
2
)

∆xD
, (3–29)

H4A′′(y) −→ 1

4π
D
2

Γ(D
2
+1)

(∆x2)
D
2
+1

≡ 1

4π
D
2

Γ(D
2
+1)

∆xD+2
. (3–30)

The 4-point contribution (3–9) to the graviton self-energy vanishes in the flat space

limit, even for D 6= 4. We can take the flat space limit of the 3-point contribution (3–11)

in two steps. First, substitute the leading behaviors (3–27) for y(x ; x ′) and (3–28) for

the basis tensors. Then use expressions (3–29)-(3–30) on the derivatives of A(y). The

result is,

−i
[
µνΣρσ

]
flat
(x ; x ′) = lim

H→0
κ2

{
4H4ηµ(ρησ)ν ×−1

2
(A′)2

+8H6∆x (µην)(ρ∆xσ) ×−A′A′′ + 16H8∆xµ∆xν∆xρ∆xσ ×−1
2
(A′′)2

+H4ηµνηρσ ×−1
8

[
16H4∆x4(A′′)2+16H2∆x2A′A′′+4(D−4)(A′)2

]
+4H6

[
ηµν∆xρ∆xσ+∆xµ∆xνηρσ

]
× 1
4

[
4H2∆x2(A′′)2+4A′A′′

]}
, (3–31)

=
κ2Γ2(D

2
)

16πD

{
ηµ(ρησ)ν ×

[
− 2

∆x2D

]
+ ∆x (µην)(ρ∆xσ) ×

[ 4D

∆x2D+2

]
+∆xµ∆xν∆xρ∆xσ ×

[
− 2D2

∆x2D+4

]
+ ηµνηρσ ×

[
−1
2

(D2−D−4)
∆x2D

]
+
[
ηµν∆xρ∆xσ+∆xµ∆xνηρσ

]
×
[D(D−2)
∆x2D+2

]}
. (3–32)

Our result (3–32) agrees with equation (26) of [61].

3.4 Correspondence with Stress Tensor Correlators

Although the flat space limit (3–32) will prove a useful guide when we renormalize

in the next section, it does not check the purely de Sitter parts of (3–11). A true de Sitter

check is provided by the stress tensor correlators recently derived by Perez-Nadal,

Roura and Verdaguer [99]. To exploit their result we first elucidate the relation between
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the graviton 2-point 1PI function and correlators of the stress tensor. Then we convert

their notation to ours.

The Heisenberg equation for the metric field operator coupled to a matter stress

tensor T µν is,

Rµν − 1
2
gµνR +

1

2
(D−2)(D−1)H2gµν = 1

2
κ2T µν . (3–33)

Perturbation theory is implemented by expressing the full metric gµν = gµν + κhµν as the

sum of a vacuum solution gµν plus κ times the graviton field hµν . Expanding the left hand

side of (3–33) in powers of the graviton field gives,

Rµν − 1
2
gµνR +

1

2
(D−2)(D−1)H2gµν = κDµνρσhρσ −

1

2
κ2∆T µν , (3–34)

where the nonlinear terms comprise the graviton pseudo-stress tensor ∆T µν . The

Lichnerowicz operator of the linear term is,

Dµνρσ ≡ D(ρgσ)(µDν) − 1
2

[
gρσDµDν+gµνDρDσ

]
+
1

2

[
gµνgρσ−gµ(ρgσ)ν

]
D2 + (D−1)

[1
2
gµνgρσ−gµ(ρgσ)ν

]
H2 , (3–35)

where Dµ is the covariant derivative operator in the background geometry. Substituting

these expansions in (3–33) and rearranging gives,

Dµνρσhρσ =
1

2
κ
(
T µν + ∆T µν

)
≡ 1
2
κT µν . (3–36)

We are computing the 1PI graviton 2-point function, which can be obtained from

the full graviton 2-point function by eliminating the one particle reducible parts and

amputating the external leg propagators. At the one loop order we are working, the one

particle reducible part drops out if one computes the correlator of the field minus its

expectation value,

δhµν(x) ≡ hµν(x)−
〈
Ω
∣∣∣hµν(x)∣∣∣Ω〉 , (3–37)

δT µν(x) ≡ T µν(x)−
〈
Ω
∣∣∣T µν(x)

∣∣∣Ω〉 . (3–38)
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To amputate, recall that the graviton propagator obeys,

√
−g(x)Dµναβ i

[
αβ∆ρσ

]
(x ; x ′) = δµ(ρδ

ν
σ)iδ

D(x−x ′) +
(
Gauge Terms

)
, (3–39)

where “Gauge Terms” refers to the extra pieces needed to complete the projection

operator onto whatever gauge condition is employed. (For example, the projection

operator for de Donder gauge is given in equation (120) of [65].) This means that

external leg propagators are amputated by −i
√
−g times the Lichnerowicz operator.

Hence the desired relation between the 2-point graviton 1PI function and a 2-point

correlator of the stress tensor is,

−i
[
µν∆ρσ

]
(x ; x ′)

=
〈
Ω
∣∣∣(−i√−gDµναβδhαβ(x)

)(
−i

√
−gDρσγδδhγδ(x

′)
)∣∣∣Ω〉+O(κ4) , (3–40)

= −1
4
κ2
√
−g(x)

√
−g(x ′)

〈
Ω
∣∣∣δT µν(x)δT ρσ(x ′)

∣∣∣Ω〉+O(κ4) . (3–41)

The expectation value on the right hand side of (3–41) is the stress tensor correlator

F µνρσ of Perez-Nadal, Roura and Verdaguer [99].

Perez-Nadal, Roura and Verdaguer actually derived F µνρσ for a scalar with arbitrary

mass, but we can compare our result (3–11) for the massless case with their equation

(28) [99]

Fµνρσ = P(µ)nµnνnρnσ +Q(µ)(nµnνgρσ + nρnσgµν)

+R(µ)(nµnρgνσ + nνnσgµρ + nµnσgνρ + nνnρgµσ)

+S(µ)(gµρgνσ + gνρgµσ) + T (µ)gµνgρσ . (3–42)

Note that here they expressed the stress tensor correlator in terms of five basis tensors

which are different from ours given in equation (3–11). Each of these five bitensors

are formed as a linear combination of products of the de Sitter invariant bitensors,

na, na′, gab, ga′b′ and gab′. The variable µ and bitensors are defined as [99]:
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• µ(x , x ′): the distance along the shortest geodesic joining x and x ′, also called the
geodesic distance;

• na and na′: the unit vectors tangent to the geodesic at the points x and x ′

respectively, pointing outward from it;

• gab′ : the parallel propagator which parallel-transports a vector from x to x ′ along
the geodesic;

• gab and ga′b′: the metric tensors at the points x and x ′ respectively.

The distance µ(x , x ′) (in our notation µ(x , x ′) = H`(x ; x ′) which is given in section 2)

corresponds to our de Sitter invariant function y(x , x ′) with the relation,

cos(µ) ≡ Z = 1− y
2
. (3–43)

In comparing their results with ours it is also useful to note the relations between

their basis tensors and ours,

na =
1

H
√
y(4−y)

∂y

∂xa
, (3–44)

nb′ =
1

H
√
y(4−y)

∂y

∂x ′b′
, (3–45)

gab′ = − 1

2H2

{
∂2y

∂xa∂x ′b′
+
1

4−y
∂y

∂xa
∂y

∂x ′b′

}
. (3–46)

Thus the five basis tensors given in (3–42) are converted into our basis tensors as,

nanbnc ′nd ′ =
1

H4(4y − y 2)2
∂y

∂xa
∂y

∂xb
∂y

∂x ′c ′
∂y

∂x ′d ′
, (3–47)

nanbgc ′d ′ + nc ′nd ′gab =
1

H2(4y − y 2)

[
gab

∂y

∂x ′c ′
∂y

∂x ′d ′
+

∂y

∂xa
∂y

∂xb
gc ′d ′

]
, (3–48)

4n(agb)(c ′nd ′) = − 2

H4(4y − y 2)
∂y

∂x (a
∂2y

∂xb)∂x ′(c ′
∂y

∂x ′d ′)

− 2

H4(4y − y 2)(4− y)
∂y

∂xa
∂y

∂xb
∂y

∂x ′c ′
∂y

∂x ′d ′
, (3–49)

2ga(c ′gd ′)b =
1

2H4
∂2y

∂xa∂x ′(c ′
∂2y

∂xd ′)∂x ′b
+

1

H4(4− y)
∂y

∂x (a
∂2y

∂xb)∂x ′(c ′
∂y

∂x ′d ′)

+
1

2H4
1

(4− y)2
∂y

∂xa
∂y

∂xb
∂y

∂x ′c ′
∂y

∂x ′d ′
, (3–50)

gabgc ′d ′ = gabgc ′d ′ . (3–51)
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(Note that we have restored the factor of H which Perez-Nadal, Roura and Veraguer set

to unity.)

For a massless, minimally coupled scalar field, the µ-dependent coefficients are

[99],

P = 2G 21 ,

Q = −G 21 + 2G1G2 ,

R = G1G2 ,

S = G 22 ,

T =
1

2
G 21 − G1G2 +

D − 4
2
G 22 . (3–52)

Here the G1 and G2 are defined as

G1(µ) = G
′′(µ)− G ′(µ) csc(µ) ,

G2(µ) = −G ′(µ) csc(µ) , (3–53)

where prime stands for derivative with respect to µ.

The comparison can be completed by noting that the Wightman function G(µ)

becomes almost the same as our A(y) for the case of MMC scalar. In the massless limit,

their propagator has the formal expansion,

G(µ) =
HD−2

(4π)D/2

∞∑
n=0

Γ(D − 1 + n)Γ(n)
Γ(D
2
+ n)

1

n!

(1 + Z
2

)n
. (3–54)

(Note that we have restored the factor of HD−2 which Perez-Nadal, Roura and Veraguer

set to unity.) Recalling the hypergeometric function,

2F1

(
α, β; γ; z

)
=

∞∑
n=0

Γ(α+n)

Γ(α)

Γ(β+n)

Γ(β)

Γ(γ)

Γ(γ+n)

zn

n!
, (3–55)

we see that G(Z) can be written as,

G(y) =
HD−2

(4π)D/2
Γ(D−1)Γ(0)
Γ(D
2
)

2F1

(
D−1, 0; D

2
; 1− y
4

)
. (3–56)
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Now we use one of the transformation formulae for hypergeometric functions (See for

example, 9.131 of [66]) to expand G in powers of y/4:

G(y) =
HD−2

(4π)
D
2

{
Γ(D
2
)

D
2
−1

(4
y

)D
2
−1
+
Γ(D
2
+1)

D
2
−2

(4
y

)D
2
−2

−Γ(0)Γ(D−1)
Γ(D
2
)

+

∞∑
n=1

[
1

n

Γ(n+D−1)
Γ(n+D

2
)

(y
4

)n
− 1

n−D
2
+2

Γ(n+D
2
+1)

Γ(n+2)

(y
4

)n−D
2
+2

]}
. (3–57)

So we see that G(y) is the same as the function A(y) except for the replacement,

Γ(0)
Γ(D−1)
Γ(D
2
)

−→ π cot
(πD
2

)Γ(D−1)
Γ(D
2
)
. (3–58)

This makes no difference because G(y) only enters the stress tensor correlator (3–42)

differentiated (See equations (3–52)-(3–53)). Thus for comparison, we replace the

derivatives of G by the ones of A:

∂G

∂µ
=

√
4y − y 2G ′ ≡

√
4y − y 2A′ ,

∂2G

∂µ2
= (4y − y 2)G ′′ + (2− y)G ′ ≡ (4y − y 2)A′′ + (2− y)A′ . (3–59)

Here the prime stand for derivative with respect to y . Then the coefficients P,Q,R,S

and T given in equation (3–52) are written in terms of y as

P = 2(4y − y 2)2(A′′)2 − 4y(4y − y 2)A′′A′ + 2y 2(A′)2 ,

Q = −(4y − y 2)2(A′′)2 − 2(2− y)(4y − y 2)A′′A′ + (4y − y 2)(A′)2 .

R = −2(4y − y 2)A′′A′ + 2y(A′)2 ,

S = 4(A′)2 ,

T =
1

2

[
(4y − y 2)2(A′′)2 + 2(2− y)(4y − y 2)A′′A′

+{4(D − 4)− (4y − y 2)}(A′)2
]
. (3–60)
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With this equation (3–60) and the conversion of basis given in equations (3–47)-(3–51)

we can arrange Fµνρσ for the MMC scalar in terms of our basis tensors,

Fµνρσ = − 4
κ2

{
∂2y

∂xµ∂x ′(ρ
∂2y

∂x ′σ)∂xν
× α(y)

+
∂y

∂x (µ
∂2y

∂xν)∂x ′(ρ
∂y

∂x ′σ)
× β(y) +

∂y

∂xµ
∂y

∂xν
∂y

∂x ′ρ
∂y

∂x ′σ
× γ(y)

+gµνg′ρσH4 × δ(y) +
[
gµν

∂y

∂x ′ρ
∂y

∂x ′σ
+

∂y

∂xµ
∂y

∂xν
g′ρσ

]
H2 × ε(y)

}
. (3–61)

= − 4
κ2

× 1√
−g(x)

√
−g(x ′)

×−i
[
µνΣρσ

]
3pt
(x ; x ′) . (3–62)
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CHAPTER 4
RENORMALIZATION

Our result (3–11) is valid as long as x ′µ 6= xµ, either with the exact coefficient

functions (3–12)-(3–16) or with the relevant expansions (3–19)-(3–23) for D = 4.

However, it is not immediately usable in the quantum-corrected, linearized Einstein

equations because they involve an integration over x ′µ,

√
−gDµνρσhρσ(x)−

∫
d4x ′

[
µνΣρσ

]
ren
(x ; x ′)hρσ(x

′) =
1

2
κ
√
−g T µν

lin (x) . (4–1)

To obtain a usable form we must express (3–11) as a product of up to six differential

operators acting upon a function of y(x ; x ′) which is integrable in D = 4 spacetime

dimensions. The derivatives with respect to xµ can be pulled outside the integral, and

those with respect to x ′µ can be partially integrated to act back on the hρσ(x ′),1 leaving

an expression for which the D = 4 limit could be taken were it not for some factors of

1/(D − 4). At this stage one adds zero in the form of identities such as,[
− D
2

(D
2
−1

)
H2

](4
y

)D
2
−1

− (4π)
D
2 iδD(x−x ′)

Γ(D
2
−1)HD−2

√
−g
= 0 . (4–2)

We combine (4–2) with terms which arise from extracting derivatives to segregate the

divergences on local, delta function terms, for example,

1

D−4

[
− D
2

(D
2
−1

)
H2

](4
y

)D−3
=

[
−D
2

(D
2
−1

)
H2

]{
( 4
y
)D−3− ( 4

y
)
D
2
−1

D−4

}
+
(4π)

D
2 iδD(x−x ′)/

√
−g

(D−4)Γ(D
2
−1)HD−2

, (4–3)

= −1
2

[
−2H2

]{4
y
ln
(y
4

)}
+O(D−4) + (4π)

D
2 iδD(x−x ′)/

√
−g

(D−4)Γ(D
2
−1)HD−2

. (4–4)

Renormalization consists of subtracting off the divergent delta functions with counterterms.

In section 4.1 we exhibit the one loop counterterms for quantum gravity. We review how

1 The resulting surface terms can be absorbed by correcting the initial state [67].
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to renormalize the flat space limit (3–32) in section 4.2. That suggests a convenient way

of organizing the tensor algebra into two transverse, 4th order differential operators, one

with spin zero and the other with spin two. In section 4.3 we implement this for de Sitter.

The spin zero part is renormalized in section 4.4, and the spin two part in section 4.5.

4.1 One Loop Counterterms

Gravity + Scalar is not renormalizable in D = 4 dimensions [9]. However, the

theorem of Bogoliubov, Parasiuk, Hepp and Zimmerman (BPHZ) shows us how to

construct local counterterms which absorb the ultraviolet divergences of any quantum

field theory to any fixed order in the loop expansion [10]. For quantum gravity at one

loop order the necessary counterterms can be taken to be the squares of the Ricci

scalar and the Weyl tensor [9]. The problem of quantum gravity is that the Weyl

counterterm would destabilize the universe if it were regarded as a fundamental,

nonperturbative interaction [68]. We shall therefore consider it only perturbatively, in

the sense of effective field theory, as a proxy for the yet unknown ultraviolet completion

of quantum gravity. The quantum effects we seek to study derive from infrared virtual

scalars with wavelengths on the order of the Hubble radius, and they will manifest as

nonlocal and ultraviolet finite contributions to the graviton self-energy which are not

affected by how nature resolves the ultraviolet problem of quantum gravity.

Because the background Ricci scalar is nonzero it is useful to reorganize R2 into a

part which is quadratic in the graviton field,

R2 =
[
R −D(D−1)H2

]2
+ 2D(D−1)H2R −D2(D−1)2H4 . (4–5)

So we will employ four counterterms,

∆L1 ≡ c1

[
R −D(D−1)H2

]2√
−g , (4–6)

∆L2 ≡ c2C
αβγδCαβγδ

√
−g , (4–7)
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∆L3 ≡ c3H
2
[
R − (D−1)(D−2)H2

]√
−g , (4–8)

∆L4 ≡ c4H
4
√
−g . (4–9)

Of course the divergences can really be eliminated with just ∆L2 and the particular

linear combination of ∆L1, ∆L3 and ∆L4 which is proportional to just R2
√
−g. It must

therefore be that two linear combinations of the coefficients are finite,

lim
D→4

[
−2D(D−1)c1 + c3

]
= Finite , (4–10)

lim
D→4

[
D2(D−1)2c1 − (D−1)(D−2)c3 + c4

]
= Finite . (4–11)

And the divergent parts of c1 and c2 must agree with the values obtained long ago by ‘t

Hooft and Veltman [9].

At this point we digress to define two 2nd order differential operators of great

importance to our subsequent analysis. They come from expanding the scalar and Weyl

curvatures around de Sitter background,

R −D(D−1)H2 ≡ Pµνκhµν +O(κ
2h2) , (4–12)

Cαβγδ ≡ Pµν
αβγδκhµν +O(κ

2h2) . (4–13)

From (4–12) we have,

Pµν = DµDν − gµν
[
D2 + (D−1)H2

]
, (4–14)

where Dµ is the covariant derivative operator in de Sitter background. The more difficult

expansion of the Weyl tensor gives,

Pµν
αβγδ = Dµν

αβγδ +
1

D−2

[
gαδDµν

βγ−gβδD
µν
αγ−gαγD

µν
βδ+gβγD

µν
αδ

]
+

1

(D−1)(D−2)

[
gαγgβδ−gαδgβγ

]
Dµν , (4–15)
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where we define,

Dµν
αβγδ ≡ 1

2

[
δ(µα δν)δ DγDβ−δ(µβ δν)δ DγDα−δ(µα δν)γ DδDβ+δ

(µ
β δν)γ DδDα

]
, (4–16)

Dµν
βδ ≡ gαγDµν

αβγδ =
1

2

[
δ(µδ D

ν)Dβ−δ(µβ δν)δ D
2−gµνDδDβ+δ

(µ
β DδD

ν)
]
, (4–17)

Dµν ≡ gαγgβδDµν
αβγδ = D

(µDν) − gµνD2 . (4–18)

One obtains the counterterm vertices by functionally differentiating i times each

counterterm action twice, and then setting the graviton field to zero. They are,

iδ∆S1
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

= 2c1κ
2
√
−g PµνPρσiδD(x−x ′) , (4–19)

iδ∆S2
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

= 2c2κ
2
√
−g gακgβλgγθgδφPµν

αβγδP
ρσ
κλθφiδ

D(x−x ′) , (4–20)

iδ∆S3
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

= −c3κ2H2
√
−gDµνρσiδD(x−x ′) , (4–21)

iδ∆S4
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

= c4κ
2H4

√
−g

[1
4
gµνgρσ−1

2
gµ(ρgσ)ν

]
iδD(x−x ′) . (4–22)

Recall that the Lichnerowicz operator in expression (4–21) was defined in expression

(3–35). Also note the flat space limits,

iδ∆S1
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

−→ 2c1κ2ΠµνΠρσiδD(x−x ′) , (4–23)

iδ∆S2
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

−→ 2c2κ2
(D−3
D−2

)[
Πµ(ρΠσ)ν−Π

µνΠρσ

D−1

]
iδD(x−x ′) , (4–24)

iδ∆S3
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

−→ 0 , (4–25)

iδ∆S4
δhµν(x)δhρσ(x ′)

∣∣∣∣∣
h=0

−→ 0 , (4–26)

where we define,

Πµν ≡ ∂µ∂ν − ηµν∂2 . (4–27)
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4.2 Renormalizing the Flat Space Result

Renormalizing the flat space result (3–32) provides an excellent guide for the vastly

more complicated reduction required on de Sitter background. We begin by extracting a

4th order differential operator from each term using the identities,

1

∆x2D
=

∂4

4(D−2)2(D−1)D
1

∆x2D−4
, (4–28)

∆xµ∆xν

∆x2D+2
=

1

8(D−2)2(D−1)D

{
∂µ∂ν∂2 +

ηµν∂4

D

}
1

∆x2D−4
, (4–29)

∆xµ∆xν∆xρ∆xσ

∆x2D+4
=

1

16(D−2)(D−1)D(D+1)

{
∂µ∂ν∂ρ∂σ

+
6

D−2
η(µν∂ρ∂σ)∂2 +

3

(D−2)D
η(µνηρσ)∂4

}
1

∆x2D−4
. (4–30)

Substituting these relations into (3–32), and then organizing the various derivatives

into factors of the transverse operator Πµν of expression (4–27), gives a manifestly

transverse form,

−i
[
µνΣρσ

]
flat
(x ; x ′)

=
κ2Γ2(D

2
)

16πD

{
− Π

µνΠρσ

8(D−1)2
−
[Πµ(ρΠσ)ν− 1

D−1Π
µνΠρσ]

4(D−2)2(D−1)(D+1)

}
1

∆x2D−4
. (4–31)

Let us pause at this point to note that we could have guessed most of the form of

expression (4–31). Gauge invariance implies transversality. We also have Poincaré

invariance, symmetry under the interchanges µ ↔ ν and ρ ↔ σ, and symmetry under

interchange of the primed and unprimed coordinates and indices. All this implies the

form,

− i
[
µνΣρσ

]
flat
(x ; x ′) = ΠµνΠρσF1(∆x

2) +
[
Πµ(ρΠσ)ν−Π

µνΠρσ

D−1

]
F2(∆x

2) . (4–32)
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Taking the trace of this and our result (3–32) against ηµνηρσ gives an equation for the

spin zero structure function F1(∆x2),

ηµνηρσ ×−i
[
µνΣρσ

]
flat
= (D−1)2∂4F1(∆x2) =

κ2Γ2(D
2
)

16πD
×−(D−2)2(D−1)D

2∆x2D
. (4–33)

Of course the solution is just what we found in (4–31) by direct computation,

F1(∆x
2) =

κ2Γ2(D
2
)

16πD
×− 1

8(D−1)2
( 1
∆x2

)D−2
. (4–34)

Determining the spin two structure function F2(∆x2) is done by first acting the

derivatives on the spin zero structure function,

ΠµνΠρσF1 = ηµ(ρησ)ν × 8F ′′
1 + ∆x

(µην)(ρ∆xσ) × 32F ′′′
1 + ∆x

µ∆xν∆xρ∆xσ

×16F ′′′′
1 + ηµνηρσ ×

[
4(D2−3)F ′′

1 + 16(D+1)∆x
2F ′′′
1 + 16∆x

4F ′′′′
1

]
+
[
ηµν∆xρ∆xσ+∆xµ∆xνηρσ

]
×
[
−8(D+3)F ′′′

1 − 16∆x2F ′′′′
1

]
. (4–35)

We subtract these from each tensor factor in (3–32) and then act the spin two operator

[Πµ(ρΠσ)ν − 1
D−1Π

µνΠρσ] on F2(∆x2) to read off an equation for each of the five tensor

factors,

ηµ(ρησ)ν ⇒ 4(D−2)D(D+1)
D−1

F ′′
2 + 16(D+1)∆x

2F ′′′
2 + 16∆x

4F ′′′′
2

=
κ2Γ2(D

2
)

16πD

{
− D

D−1
1

∆x2D

}
, (4–36)

∆x (µην)(ρ∆xσ) ⇒ −16D(D+1)
D−1

F ′′′
2 − 32∆x2F ′′′′

2

=
κ2Γ2(D

2
)

16πD

{
4D

D−1
1

∆x2D

}
, (4–37)

∆xµ∆xν∆xρ∆xσ ⇒ 16
(D−2
D−1

)
F ′′′′
2 =

κ2Γ2(D
2
)

16πD

{
− 4D
D−1

1

∆x2D

}
, (4–38)
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ηµνηρσ ⇒ − 4

D−1

[
(D−2)(D+1)F ′′

2 + 4(D+1)∆x
2F ′′′
2 + 4∆x

4F ′′′′
2

]
=

κ2Γ2(D
2
)

16πD

{
1

D−1
1

∆x2D

}
, (4–39)[

ηµν∆xρ∆xσ+∆xµ∆xνηρσ
]
⇒ 16

D−1

[
(D+1)F ′′′

2 +∆x
2F ′′′′
2

]
= 0 . (4–40)

Each of these equations has the same solution, which of course agrees with (4–31),

F2(∆x
2) =

κ2Γ2(D
2
)

16πD
×− 1

4(D−2)2(D−1)(D+1)

( 1
∆x2

)D−2
. (4–41)

We note for future reference that a particular linear combination of the five relations

(4–36)-(4–40) gives a second order equation for F2(∆x2),

(4−39) + ∆x2(4−40) = − 4

D−1
(D−2)(D+1)F ′′

2 =
κ2Γ2(D

2
)

16πD

{
1

D−1
1

∆x2D

}
. (4–42)

Even after extracting the 4th order differential operators from the integration of

(4–1), the factor of 1/∆x2D−4 is logarithmically divergent. We must therefore extract one

more d’Alembertian,

( 1
∆x2

)D−2
=

∂2

2(D−3)(D−4)

( 1
∆x2

)D−3
. (4–43)

After this final derivative is extracted the integrand converges, however, we still cannot

take the D = 4 limit owing to the factor of 1/(D − 4). The solution is to add zero in the

form of the identity,

∂2
( 1
∆x2

)D
2
−1

− 4π
D
2 iδD(x−x ′)
Γ(D
2
−1)

= 0 . (4–44)

To make this dimensionally consistent with (4–43) we must multiply by the dimensional

regualrization mass scale µ raised to the (D − 4) power,

( 1
∆x2

)D−2
=

∂2

2(D−3)(D−4)

{
1

∆x2D−6
− µD−4

∆xD−2

}
+

4π
D
2 µD−4iδD(x−x ′)

2(D−3)(D−4)Γ(D
2
−1)

,

= −1
4
∂2

{
ln(µ2∆x2)

∆x2
+O(D−4)

}
+

4π
D
2 µD−4iδD(x−x ′)

2(D−3)(D−4)Γ(D
2
−1)

. (4–45)
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The divergences have now been segregated on delta function terms which can

be removed with local counterterms. From expressions (4–23)-(4–26) we see that the

counterterms make the following contribution to the graviton self-energy,

−i
[
µν∆Σρσ

]
flat
(x ; x ′) = ΠµνΠρσ

{
2c1κ

2iδD(x−x ′)

}

+
[
Πµ(ρΠσ)ν − Π

µνΠρσ

D−1

]{
2
(D−3
D−2

)
c2κ

2iδD(x−x ′)

}
. (4–46)

The delta function terms will be entirely absorbed by choosing the constants c1 and c2

as,

c1 =
µD−4Γ(D

2
)

28π
D
2

(D−2)
(D−1)2(D−3)(D−4)

, (4–47)

c2 =
µD−4Γ(D

2
)

28π
D
2

2

(D+1)(D−1)(D−3)2(D−4)
. (4–48)

Of course the divergent parts agree with the results obtained long ago by ‘t Hooft and

Veltman [9], with the arbitrary finite parts represented by µ. The fully renormalized

graviton self-energy (for flat space background) is,

−i
[
µνΣρσ

]
ren
flat

= lim
D→4

{
−i

[
µνΣρσ

]
flat
(x ; x ′)− i

[
µν∆Σρσ

]
flat
(x ; x ′)

}
, (4–49)

= ΠµνΠρσ∂2

{
κ2

2932π4
ln(µ2∆x2)

∆x2

}

+
[
Πµ(ρΠσ)ν − 1

3
ΠµνΠρσ

]
∂2

{
κ2

2103151π4
ln(µ2∆x2)

∆x2

}
. (4–50)

4.3 The de Sitter Structure Functions

We must now extend the flat space ansatz (4–32) to de Sitter and determine the

resulting structure functions by comparison with the explicit result (3–11) of section

3. As before, gauge invariance implies transversality, which suggests that we make

use of the differential operators Pµν and Pµν
αβγδ which were defined in expressions

(4–14) and (4–15), respectively. In place of Poincaré invariance we now have de Sitter

48



invariance. We also have symmetry under the interchanges µ ↔ ν and ρ ↔ σ, and

under interchange of the primed and unprimed coordinates and indices. A simple

generalization is,

−i
[
µνΣρσ

]
(x ; x ′) =

√
−g(x)Pµν(x)

√
−g(x ′)Pρσ(x ′)

{
F1(y)

}
+
√

−g(x)Pµν
αβγδ(x)

√
−g(x ′)Pρσ

κλθφ(x
′)

{
T ακT βλT γθT δφ

(D−2
D−3

)
F2(y)

}
, (4–51)

where the bitensor T ακ is,2

T ακ(x ; x ′) ≡ − 1

2H2
∂2y(x ; x ′)

∂xα∂x ′κ
. (4–52)

As in flat space, the second term is traceless.

Note the flat space limits of the bitensor and the two structure functions,

lim
H→0

T ακ = ηκλ , lim
H→0

F1(y) = F1(∆x2) , lim
H→0

F2(y) = F2(∆x2) . (4–53)

These limits mean one can immediately read off the most singular parts of the

expansions for each structure function from the corresponding flat space result,

F1(y) =
κ2H2D−4Γ2(D

2
)

(4π)D

{
−1

8(D−1)2
(4
y

)D−2
+ ...

}
, (4–54)

F2(y) =
κ2H2D−4Γ2(D

2
)

(4π)D

{
−1

4(D−3)(D−2)(D−1)(D+1)

(4
y

)D−2
+ ...

}
. (4–55)

The interesting de Sitter physics we seek to elucidate derives from the subdominant

terms.

Just as for the flat space limit, we can obtain an equation for the spin zero structure

function by tracing (4–51) and then comparing with the trace of the explicit computation

2 One could actually employ any bitensor — for example, the parallel transport matrix (3–46) — which
reduces to ηακ in the flat space limit. Different choices for T ακ(x ; x ′) make corresponding changes in
the subdominant parts of the spin two structure function F2(y). We have not troubled to determine the
“simplest” choice.
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(3–11). Tracing the ansatz gives,

gµν(x)√
−g(x)

×
gρσ(x

′)√
−g(x ′)

×−i
[
µνΣρσ

]
(x ; x ′) = (D−1)2

[
+DH2

][
′+DH2

]
F1(y) . (4–56)

Tracing the explicit result (3–11), substituting (3–12)-(3–16), and then making use of

(2–33) gives,

gµν(x)√
−g(x)

×
gρσ(x

′)√
−g(x ′)

×−i
[
µνΣρσ

]
3pt
(x ; x ′) = H4

{[
4D−(4y−y 2)

]
α

+(2−y)(4y−y 2)β + (4y−y 2)2γ +D2δ + 2D(4y−y 2)ε

}
, (4–57)

=
1

8
(D−2)2κ2H4

{[
(4y−y 2)− 4D

]
(A′)2

−2(2−y)(4y−y 2)A′A′′ − (4y−y 2)2(A′′)2

}
, (4–58)

= −1
8
(D−1)2(D−2)2κ2H4

{
4

D−1
(A′)2 +

[
(2−y)A′ − k

]2}
. (4–59)

Now note that the primed and unprimed scalar d’Alembertian’s agree when acting on

any function of only y(x ; x ′). Equating (4–56) and (4–59) and expanding implies,

[
H2
+D

]2
F1(y) = −1

8
(D−2)2κ2

{
4

D−1
(A′)2 +

[
(2−y)A′ − k

]2}
. (4–60)

= − K
32

(D−2)2

(D−1)

{
D
(4
y

)D
+ (D−2)2

(4
y

)D−1
+
1

2
(D3−7D2+16D−8)

(4
y

)D−2
+
(
Irrelevant

)}
, (4–61)

where the constant K was defined in (3–24) and “Irrelevant” means terms which are

both integrable at coincidence, and which vanish in D = 4 dimensions.

Let us first note that we can find a Green’s function for the differential operator

[ /H2 + D]. To see this, act the operator on some function f (y) which is free of the

unique power y
D
2
−1 which produces a delta function,

[
H2
+D

]
f (y) = (4y−y 2)f ′′ +D(2−y)f ′ +Df . (4–62)
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Now note that f1(y) = (2− y) is a homogeneous solution, which means we can factor to

obtain a first order equation (and hence solvable) for the second solution,

f1(y) = (2−y) =⇒ f2(y) ≡ f1(y)g(y) with g′(y) =
1

(4y−y 2)D2 f 21 (y)
. (4–63)

With the two, linearly independent solutions one can construct a Green’s function,

G1(y ; y
′) = θ(y−y ′)

[
f2(y)f1(y

′)−f1(y)f2(y ′)
]
(4y ′−y ′2)

D
2
−1 . (4–64)

Hence we can solve (4–61) to obtain on integral epxression for the spin zero structure

function,

F1(y) =

[
1

H2
+D

]2{
Right hand side of (4−61)

}
(4–65)

Although we will eventually make use of the Green’s function (4–64), it is best to

delay this until the point at which one can set D = 4. For the more singular terms the

best strategy is to exploit the fact that the “source” terms on the right hand side of (4–61)

upon which we wish to act the inverse of [ /H2 + D]2 are just powers of y . Consider

acting the operator upon a power p − 2 6= D
2
− 1 or D

2
− 2 (those powers produce delta

functions),

[
H2
+D

]2(4
y

)p−2
= (p−2)(p−1)(p−1−D

2
)(p−D

2
)
(4
y

)p
+ (p−2)(p−1−D

2
)

×
[
D(2p−1)−2(p−1)2

](4
y

)p−1
+ (p−1)2(D−p+2)2

(4
y

)p−2
. (4–66)

We can therefore develop a recursive procedure for reducing the power of the source,[
1

H2
+D

]2(4
y

)p
=

1

(p−2)(p−1)(p−1−D
2
)(p−D

2
)

(4
y

)p−2
−

[
1

H2
+D

]2

×

{
[D(2p−1)−2(p−1)2]
(p−1)(p−D

2
)

(4
y

)p−1
+

(p−1)(D+2−p)2

(p−2)(p−1−D
2
)(p−D

2
)

(4
y

)p−2}
. (4–67)

The strategy is to apply this until the source is integrable, at which point the dimension

can be set to D = 4 (unless there are factors of 1/(D − 4)) and the D = 4 Green’s

function can be used to obtain the full solution for F1(y).
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It is useful to examine the sorts of terms generated when this recursive procedure

is applied to the source terms on the right hand side of (4–61). The most singular term

introduces no factors of 1/(D − 4), nor does it produce remainder terms different from

those in the original source term (4–61),[
1

H2
+D

]2(4
y

)D
=

4

(D−2)D(D−2)(D−1)

(4
y

)D−2
−

[
1

H2
+D

]2{
2(3D−2)
D(D−1)

(4
y

)D−1
+

16(D−1)
(D−2)D(D−2)

(4
y

)D−2}
. (4–68)

Neither statement is true for the remaining two source terms,[
1

H2
+D

]2(4
y

)D−1
=

4

(D−4)(D−2)(D−3)(D−2)

(4
y

)D−3
−

[
1

H2
+D

]2{
2(5D−8)

(D−2)(D−2)

(4
y

)D−2
+

36(D−2)
(D−4)(D−2)(D−3)

(4
y

)D−3}
, (4–69)[

1

H2
+D

]2(4
y

)D−2
=

4

(D−6)(D−4)(D−4)(D−3)

(4
y

)D−4
−

[
1

H2
+D

]2{
2(7D−18)
(D−4)(D−3)

(4
y

)D−3
+

64(D−3)
(D−6)(D−4)(D−4)

(4
y

)D−4}
. (4–70)

These relations allow the the spin zero structure function to be expressed as a “quotient”

and a “remainder” of the form,

F1(y) = Q1(y) +
[ 1

H2
+D

]2
R1(y) , (4–71)

Q1(y) = −K

{
f1a

(4
y

)D−2
+
f1b
D−4

(4
y

)D−3
+

f1c
(D−4)2

(4
y

)D−4}
, (4–72)

R1(y) = −K

{
f1d
D−4

(4
y

)D−3
+

f1e
(D−4)2

(4
y

)D−4
+
(
Irrelevant

)}
, (4–73)

where the coefficients are,

f1a =
1

8(D−1)2
, (4–74)

52



f1b =
D(D2−5D+2)
8(D−3)(D−1)2

, (4–75)

f1c =
D2(D4−12D3+39D2−16D−36)
16(D−6)(D−3)(D−1)2

, (4–76)

f1d = −8
3
+
79

9
(D−4) +O

(
(D−4)2

)
, (4–77)

f1e =
32

3
− 64
9
(D−4)− 274

9
(D−4)2 +O

(
(D−4)3

)
. (4–78)

Although the powers yD−3 and yD−4 in the remainder term of (4–71) are integrable,

the factors of 1/(D − 4) they carry preclude us setting D = 4 and then obtaining an

explicit form using the D = 4 Green’s function. In the next section we will see how to

add zero so as to localize the divergences, and then absorb them into counterterms. For

now, let us assume F1(y) has been derived and explain the procedure for computing the

spin two structure function F2(y).

The spin zero part of the graviton self-energy can be expressed as a sum of the five

de Sitter invariant bitensors times functions of y ,

Pµν(x)×Pρσ(x ′)×F1(y) =
∂2y

∂xµ∂x ′(ρ

∂2y

∂x ′σ)∂xν
×α1(y) +

∂y

∂x(µ

∂2y

∂xν)∂x ′(ρ

∂y

∂x ′σ)

×β1(y) +
∂y

∂xµ

∂y

∂xν

∂y

∂x ′ρ

∂y

∂x ′σ
×γ1(y) + H

4gµν(x)gρσ(x ′)×δ1(y)

+H2
[
gµν(x)

∂y

∂x ′ρ

∂y

∂x ′σ
+

∂y

∂xµ

∂y

∂xν
gρσ(x ′)

]
×ε1(y) , (4–79)

Here the spin zero coefficient functions are,

α1 = 2F ′′
1 , (4–80)

β1 = 4F ′′′
1 , (4–81)

γ1 = F ′′′′
1 , (4–82)

δ1 = (4y−y 2)2F ′′′′
1 + 2(D+1)(2−y)(4y−y 2)F ′′′

1 − 4(4y−y 2)F ′′
1

+(D2−3)(2−y)2F ′′
1 + (D−1)2(2−y)F ′

1 + (D−1)2F1 , (4–83)

ε1 = −(4y−y 2)F ′′′′
1 − (D+3)(2−y)F ′′′

1 + (D+1)F ′′
1 . (4–84)
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Of course the spin two contribution can be reduced to the same form,

Pµν
αβγδ(x)× Pρσ

κλθφ(x
′)×

{
T ακT βλT γθT δφ

(D−2
D−3

)
F2(y)

}

=
∂2y

∂xµ∂x ′(ρ

∂2y

∂x ′σ)∂xν
×α2(y) +

∂y

∂x(µ

∂2y

∂xν)∂x ′(ρ

∂y

∂x ′σ)
× β2(y)

+
∂y

∂xµ

∂y

∂xν

∂y

∂x ′ρ

∂y

∂x ′σ
×γ2(y) + H

4gµν(x)gρσ(x ′)×δ2(y)

+H2
[
gµν(x)

∂y

∂x ′ρ

∂y

∂x ′σ
+

∂y

∂xµ

∂y

∂xν
gρσ(x ′)

]
×ε2(y) , (4–85)

Determining the coefficient functions is an extremely tedious exercise that was done by

computer. The results for each coefficient function are expressed as an expansion in

powers of derivatives of the spin two structure function, for example,

α2 =

4∑
k=0

α2k
dkF2
dy k

. (4–86)

The various coefficients, which are functions of D and y , are reported in Tables 4-1-4-5.

Table 4-1. Coefficient of F2: each term is multiplied by 1
16(D−2)(D−1)

Coefficient of F2
α20 −(D−3)D2(D+1)2

[
−4(D−2) + (D−1)(4y−y 2)

]
β20 2(D−3)(D−1)D2(D+1)2(2−y)
γ20 (D−3)(D−1)D2(D+1)2

δ20 4(D−3)D(D+1)2
[
−4(D−2) +D(4y−y 2)

]
ε20 −4(D−3)D2(D+1)2

Table 4-2. Coefficient of F ′
2: each term is multiplied by 1

16(D−2)(D−1)

Coefficient of F2
α21 4(D−3)(D+1)2(2−y)

[
−2(D−2)D + (D−1)(D+1)(4y−y 2)

]
β21 8(D−3)(D+1)2

[
−3D2 + (D−1)(D+1)(4y−y 2)

]
γ21 −4(D−3)(D−1)(D+1)3(2−y)
δ21 −16(D−3)(D+1)2(2−y)

[
−2(D−2) + (D+1)(4y−y 2)

]
ε21 16(D−3)(D+1)3(2−y)

Now recall the second order equation (4–42) we were able to find for the flat

space structure function F2(∆x2) by adding δ and ∆x2ε. After long contemplation of
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Table 4-3. Coefficient of F ′′
2 : each term is multiplied by 1

16(D−2)(D−1)

Coefficient ofF ′′
2

α22 2
[
8(D−2)2D(D+1)− 4(D+1)(3D3−8D2−6D+12)(4y−y 2)

+(D−3)(D−1)(3D2+9D+7)(4y − y 2)2
]

β22 −4(2−y)
[
−2D(D+1)(3D2−5D−10)

+(D−3)(D−1)(3D2+9D+7)(4y−y 2)
]

γ22 −2
[
−12(D4−D3−7D2+D+10)

+(D−3)(D−1)(3D2+9D+72)(4y−y 2)
]

δ22 −8
[
8(D−2)2(D+1)− 2(D+1)(6D2−11D−18)(4y−y 2)

+(D−3)(3D2+9D+7)(4y−y 2)2
]

ε22 8
[
−2(D+1)(5D2−6D−24) + (D−3)(3D2+9D+7)(4y−y 2)

]
Table 4-4. Coefficient of F ′′′

2 : each term is multiplied by 1
16(D−2)(D−1)

Coefficient ofF ′′′
2

α23 −4(D−1)(2−y)(4y−y 2)
[
−2(D−2)(D+1)

+(D−3)(D+2)(4y−y 2)
]

β23 −8
[
4(D−2)D(D+1)− (5D3−8D2−23D+22)(4y−y 2)

+(D−3)(D−1)(D+2)(4y−y 2)2
]

γ23 4(2−y)
[
−4(D−2)(D2−5) + (D−3)(D−1)(D+2)(4y−y 2)

]
δ23 16(2−y)(4y−y 2)

[
−2(D−2)(D+1) + (D−3)(D+2)(4y−y 2)

]
ε23 −16(2−y)

[
−2(D−2)(D+1) + (D−3)(D+2)(4y−y 2)

]
Table 4-5. Coefficient of F ′′′′

2 : each term is multiplied by 1
16(D−2)(D−1)

Coefficient ofF ′′′′
2

α24 −(D−1)(4y−y 2)2
[
−4(D−2) + (D−3)(4y−y 2)

]
β24 2(D−1)(2−y)(4y−y 2)

[
−4(D−2) + (D−3)(4y−y 2)

]
γ24

[
4(D−2)− (D−3)(4y−y 2)

][
4(D−2)− (D−1)(4y−y 2)

]
δ24 4(4y−y 2)2

[
−4(D−2) + (D−3)(4y−y 2)

]
ε24 −4(4y−y 2)

[
−4(D−2) + (D−3)(4y−y 2)

]
the bewildering data in Tables 4-1-4-5 it becomes apparent that a similar second order
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equation for F2(y) derives from the combination,

δ2(y) + (4y−y 2)ε2(y) =
[
δ(y)−δ1(y)

]
+ (4y−y 2)

[
ε(y)−ε1(y)

]
, (4–87)

= −
(D+1
D−1

){
(D−2)F ′′

2 − (D−3)

[
(4y−y 2)F ′′

2

+2(D+1)(2−y)F ′
2 −D(D+1)F2

}
. (4–88)

Hence we can express the equation for F2(y) as,

DF2 = −
(D−1
D+1

){[
δ(y)−δ1(y)

]
+ (4y−y 2)

[
ε(y)−ε1(y)

]}
, (4–89)

where the second order operator D is,

D ≡ 4(D−2)
( d
dy

)2
−(D−3)

[
(4y−y 2)

( d
dy

)2
+ 2(D+1)(2−y) d

dy
−D(D+1)

]
, (4–90)

= 4
( d
dy

)2
+ (D−3)

[
(2−y)2

( d
dy

)2
− 2(D+1)(2−y) d

dy
+D(D+1)

]
. (4–91)

The source term on the right hand side of (4–89) has the form,

−
(D−1
D+1

){[
δ(y)−δ1(y)

]
+ (4y−y 2)

[
ε(y)−ε1(y)

]}

= K

{
sa

(4
y

)D
+
sb
D−4

(4
y

)D−1
+
sc
D−4

(4
y

)D−2
+ sc ′

(4
y

)D
2

+
sd
D−4

(4
y

)D−3
+

se
(D−4)2

(4
y

)D−4
+
(
Irrelevant

)}
+R , (4–92)

where the remainder term R derives from the remainder R1 of F1,

R =
(D−1
D+1

){
(D−1)(2−y)(4y−y 2)

( ∂

∂y

)3
−D(D−1)(4y−y 2)

( ∂

∂y

)2
+4(D2−3)

( ∂

∂y

)2
+ (D−1)2(2−y)

( ∂

∂y

)
+ (D−1)2

}[
1

H2
+D

]2
R1 . (4–93)
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The coefficients in (4–92) are,

sa = − 1

16(D+1)
, (4–94)

sb = − (D−2)D
16(D−1)

, (4–95)

sc = −(D−4)(D−2)D(D+3)
32(D−6)(D−1)

, (4–96)

sc ′ = − (D−4)(D−1)Γ(D)
16(D+1)Γ(D

2
)Γ(D

2
+1)

, (4–97)

sd = −7
5
+
263

100
(D−4) +O

(
(D−4)2

)
, (4–98)

se =
18

5
− 18
25
(D−4)− 11331

1000
(D−4)2 +O

(
(D−4)3

)
. (4–99)

Just as for the differential operator (
H2
+ D), it is straightforward to construct a

Green’s function to invert D. The first step is to change variables in the second form

(4–91),

w ≡
√
D−3
4
(2−y) =⇒ D = (D−3)

[
(1+w 2)

( d
dw

)2
+2(D+1)w

d

dw
+D(D+1)

]
. (4–100)

The homogeneous equation Df (w) = 0 gives rise to a simple, 2-term recursion relation

which generates even and odd solutions. These series solutions can be expressed as

hypergeometric functions that reduce to elementary functions for D = 4,

fe(w) = 2F1

(D
2
,
D+1

2
;
1

2
;w 2

)
−→ (1−6w 2+w 4)

(1+w 2)4
, (4–101)

fo(w) = w × 2F1

(D+1
2
,
D+2

2
;
3

2
;w 2

)
−→ (w−w 3)
(1+w 2)4

. (4–102)

Because we again have both homogeneous solutions it is simple to write down a

Green’s function,

G2(w ;w
′) =

θ(w−w ′)

D−3

[
fo(w)fe(w

′)−fe(w)fo(w ′)
]
(1+w ′2)D . (4–103)

As was the case for it spin zero cousin (4–64), the spin two Green’s function

(4–103) is not simple to use for arbitrary D. We therefore adopt the same strategy we
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used for F1, of recursively extracting powers until the remainder is integrable and the

D = 4 forms can be employed. Acting D on a power gives,

D
(4
y

)p−2
=
1

4
(D−2)(p−2)(p−1)

(4
y

)p
+(D−3)(p−2)(D+2−p)

(4
y

)p−1
+ (D−3)(D+2−p)(D+3−p)

(4
y

)p−2
. (4–104)

Hence we conclude,

1

D

(4
y

)p
=

4

(D−2)(p−2)(p−1)

(4
y

)p−2
− 4
D

{
(D−3)(D+2−p)
(D−2)(p−1)

(4
y

)p−1
+
(D−3)(D+2−p)(D+3−p)
(D−2)(p−2)(p−1)

(4
y

)p−2}
. (4–105)

For the four powers of relevance expression (4–105) gives,

1

D

(4
y

)D
=

4

(D−2)2(D−1)

(4
y

)D−2
− 1
D

{
8(D−3)

(D−2)(D−1)

(4
y

)D−1
+

24(D−3)
(D−2)2(D−1)

(4
y

)D−2}
, (4–106)

1

D

(4
y

)D−1
=

4

(D−3)(D−2)2
(4
y

)D−3
− 1
D

{
12(D−3)
(D−2)2

(4
y

)D−2
+

48

(D−2)2
(4
y

)D−3}
, (4–107)

1

D

(4
y

)D−2
=

4

(D−4)(D−3)(D−2)

(4
y

)D−4
− 1
D

{
16

(D−2)

(4
y

)D−3
+

80

(D−4)(D−2)

(4
y

)D−4}
, (4–108)

1

D

(4
y

)D
2

=
16

(D−4)(D−2)2
(4
y

)D
2
−2

− 4
D

{
(D−3)(D+4)
(D−2)2

(4
y

)D
2
−1
+
(D−3)(D+4)(D+6)
(D−4)(D−2)2

(4
y

)D
2
−2
}
. (4–109)
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These relations allow the spin two structure function to be expressed as a “quotient” and

“remainder” of the form,

F2 = Q2(y) +
1

D
R2(y) , (4–110)

Q2 = −K

{
f2a

(4
y

)D−2
+
f2b
D−4

(4
y

)D−3
+

f2c
(D−4)2

(4
y

)D−4
+
f2c ′

D−4

(4
y

)D
2
−2
}
, (4–111)

R2 = −K

{
f2d
D−4

(4
y

)D−3
+

f2e
(D−4)2

(4
y

)D−4
+

(
Irrelevant

)}
+R , (4–112)

where the coefficients are,

f2a =
1

4(D − 2)2(D − 1)(D + 1)
, (4–113)

f2b =
D4−3D3−8D2+60D−96
4(D−3)(D−2)3(D−1)(D+1)

, (4–114)

f2c =

D8−8D7−13D6+348D5−1136D4−210D3+15056D2−38208D+34560
8(D−6)(D−3)(D−2)4(D−1)(D+1)

, (4–115)

f2c ′ =
(D−4)(D−1)Γ(D)

(D−2)2(D+1)Γ(D
2
)Γ(D

2
+1)

, (4–116)

f2d =
17

5
+
161

300
(D−4) +O

(
(D−4)2

)
,

f2e =
82

5
+
243

25
(D−4) + 13343

3000
(D−4)2 +O

(
(D−4)3

)
. (4–117)

4.4 Renormalizing the Spin Zero Structure Function

Recall the form (4–71) we obtained for the spin zero struncture function from taking

the trace of the graviton self-energy,

F1(y) = Q1(y) +
[ 1

H2
+D

]2
R1(y) . (4–118)

Recall also that the quotient Q1(y) and the remainder R1(y) are given in relations

(4–72)-(4–78). From these expressions we perceive three sorts of ultraviolet divergences:

• The factor of ( 4
y
)D−2 in Q1, which has a finite coefficient but is still not integrable in

D = 4 dimensions;
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• The factors of 1
D−4(

4
y
)D−3 in Q1 and R1 which are integrable in D = 4 dimensions

but have divergent coefficients that preclude taking the unregulated limits; and

• The factors of ( 1
D−4)

2( 4
y
)D−4 in Q1 and R1 which are integrable in D = 4

dimensions but have even more divergent coefficients.

In this section we will explain how to localize all three divergences onto delta function

terms which can be absorbed by the counterterms (4–19), (4–21) and (4–22). We will

also take the unregulated limits of the remaining, finite parts, and use the D = 4 Green’s

function (4–64) to obtain an explicit result for the renormalized structure function.

In dealing with the factor of ( 4
y
)D−2 in Q1, the first step is to extract a d’Alembertian,

(4
y

)D−2
=

2

(D−4)(D−3)

[
H2

(4
y

)D−3
− 2(D−3)

(4
y

)D−3]
. (4–119)

The resulting factors of ( 4
y
)D−3 are integrable in D = 4 dimensions, at which point we

could take the unregulated limit except for the factor of 1/(D − 4) in (4–119). We can

localize the divergence on a delta function by adding zero in the form of the identity

(4–2),

(4
y

)D−2
=

2

(D−4)(D−3)

{
H2

[(4
y

)D−3
−
(4
y

)D
2
−1
]

−2(D−3)
(4
y

)D−3
+
D

2

(D
2
−1

)(4
y

)D
2
−1
+
(4π)

D
2

Γ(D
2
−1)
iδD(x−x ′)
HD

√
−g

}
, (4–120)

= −
[
H2

−2
]{4
y
ln
(y
4

)}
− 4
y
+O(D−4) + 2(4π)

D
2 iδD(x−x ′)/

√
−g

(D−4)(D−3)Γ(D
2
−1)HD

. (4–121)

We turn now to the factors of 1
D−4(

4
y
)D−3 and ( 1

D−4)
2( 4
y
)D−4 in Q1 and R1. The key

relations for resolving these terms follow from (4–2),

[
H2
+D

]2(4
y

)D
2
−1
=
1

16
D2(D+2)2

(4
y

)D
2
−1

+
(4π)

D
2

Γ(D
2
−1)HD

√
−g

[
H2
+D+

1

4
D(D+2)

]
iδD(x−x ′) , (4–122)
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[
H2
+D

]2(4
y

)D
2
−2
= −1
4
(D−4)(D2+2D−4)

(4
y

)D
2
−1

+
1

16
(D−2)2(D+4)2

(4
y

)D
2
−2

− (D−4)(4π)D2
2Γ(D

2
−1)HD

√
−g
iδD(x−x ′) , (4–123)[

H2
+D

]2
1 = D2 . (4–124)

One adds zero using these relations so as to resolve the problematic terms in Q1, and

the remainder automatically resolves the problematic terms in R1,

f1b
D−4

(4
y

)D−3
+

f1c
(D−4)2

(4
y

)D−4
+

[
1

H2
+D

]2{
f1d
D−4

(4
y

)D−3
+

f1e
(D−4)2

(4
y

)D−4}

=
f1b
D−4

{(4
y

)D−3
−
(4
y

)D
2
−1
}
+

f1c
(D−4)2

{(4
y

)D−4
− 2

(4
y

)D
2
−2
+ 1

}

+

[
1

H2
+D

]2{
f1d
D−4

(4
y

)D−3
+
[D2(D+2)2f1b−8(D2+2D−4)f1c ]

16(D−4)

(4
y

)D
2
−1

+
f1e

(D−4)2
(4
y

)D−4
+
(D−2)2(D+4)2f1c

8(D−4)2
(4
y

)D
2
−2
− D2f1c
(D−4)2

+
(4π)

D
2 /
√
−g

Γ(D
2
−1)HD

[
f1b
D−4

[
H2
+D

]
+
D(D+2)f1b−4f1c
4(D−4)

]
iδD(x−x ′)

}
, (4–125)

=
1

18
× 4
y
ln
(y
4

)
−1
6
× ln2

(y
4

)
+O(D−4) +

[
1

H2
+4

]2{
4

3
× 4
y
ln
(y
4

)
+
8

3
× 4
y
+
8

3
ln2

(y
4

)
−8 ln

(y
4

)
+
1

3

}
+

[
1

H2
+D

]2{
(4π)

D
2 /
√
−g

Γ(D
2
−1)HD

×

[
f1b
D−4

[
H2
+D

]
+
D(D+2)f1b−4f1c
4(D−4)

]
iδD(x−x ′)

}
. (4–126)

Employing expressions (4–121) and (4–126) in (4–71) allows us to separate the

spin zero structure function into a finite part and a divergent part,

F1 = F1R +O(D−4) + ∆F1 . (4–127)
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The finite part consists of the renormalized spin zero structure function,

F1R =
κ2H4

(4π)4

{
H2

[
1

72
× 4
y
ln
(y
4

)]
− 1
12

× 4
y
ln
(y
4

)
+
1

72
× 4
y
+
1

6
ln2

(y
4

)}

+
κ2H4

(4π)4

[
1

H2
+4

]2{
−4
3
× 4
y
ln
(y
4

)
−8
3
× 4
y
−8
3
ln2

(y
4

)
+8 ln

(y
4

)
−1
3

}
. (4–128)

The divergent part consists of [
H2
+D]−2 acting on a sum of three local terms,

∆F1 =
κ2HD−4(D

2
−1)Γ(D

2
)

(4π)
D
2

[
1

H2
+D

]2{
−2f1a

(D−4)(D−3)

[
H2
+D

]2
iδD(x−x ′)√

−g

− f1b
D−4

[
H2
+D

]
iδD(x−x ′)√

−g
−

[
D(D+2)f1b−4f1c
4(D−4)

]
iδD(x−x ′)√

−g

}
. (4–129)

Of course one cancels ∆F1 with counterterms. From expressions (4–19)-(4–22) we

see that the four counterterms contribute to the graviton self-energy as,

−i
[
µν∆Σρσ

]
(x ; x ′) =

√
−g

[
2c1κ

2PµνPρσ + 2c2κ
2gακgβλgγθgδφPµν

αβγδP
ρσ
κλθφ

−c3κ2H2Dµνρσ + c4κ
2H4

√
−g

[1
4
gµνgρσ−1

2
gµ(ρgσ)ν

]]
iδD(x−x ′) . (4–130)

Tracing as we did in (4–56) gives,

gµν(x)√
−g(x)

×
gρσ(x

′)√
−g(x ′)

×−i
[
µν∆Σρσ

]
(x ; x ′) = (D−1)2H4

[
2c1κ

2
[
H2
+D

]2
+0−1

2

(D−2
D−1

)
c3κ

2
[
H2
+D

]
+
D(D−2)
4(D−1)2

c4κ
2

]
iδD(x−x ′)√

−g
. (4–131)

We can entirely absorb ∆F1 by making the choices,

c1 =
HD−4(D

2
−1)Γ(D

2
)

(4π)
D
2

× f1a
(D−4)(D−3)

=
HD−4Γ(D

2
)

16(4π)
D
2

× (D−2)
(D−4)(D−3)(D−1)2

, (4–132)
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c3 =
HD−4(D

2
−1)Γ(D

2
)

(4π)
D
2

×−2
(D−1
D−2

)
× f1b
D−4

=
HD−4Γ(D

2
)

16(4π)
D
2

×− 2D(D2−5D+2)
(D−4)(D−3)(D−1)

, (4–133)

c4 =
HD−4(D
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−1)Γ(D
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)

(4π)
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2
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×
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The linear combinations (4–10) and (4–11) are finite,

−2(D−1)Dc1 + c3 =
HD−4Γ(D

2
)

16(4π)
D
2

× −2D2

(D−3)(D−1)
, (4–135)

(D−1)2D2c1 − (D−2)(D−1)c3 + c4

=
HD−4Γ(D

2
)

16(4π)
D
2

× D(D
3−6D2+8D−24)
(D−6)(D−3)

. (4–136)

Therefore neither the Newton constant nor the cosmological constant requires

a divergent renormalization, although we are free to continue making the finite

renormalizations of these constants which are implied by equations (4–132)-(4–134).

It remains to act the D = 4 Green’s function (4–64) twice on the renormalized

remainder term in expression (4–128). The result is,[
1
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4
) . (4–137)

63



Here Li2(z) is the dilogarithm function,

Li2(z) ≡ −
∫ z

0

dt
ln(1−t)
t

=

∞∑
k=1

zk

k2
. (4–138)

Hence our final result for the renormalized spin zero structure function is,
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4.5 Renormalizing the Spin Two Structure Function

Recall the form (4–110) we obtained for the spin two structure function,

F2(y) = Q2(y) +
1

D
R2(y) , (4–140)

where the second order differential operator D was defined in (4–91). Recall also that

the quotient Q2(y) and the remainder R2(y) are given in relations (4–111)-(4–117).

These expression imply that F2 harbors the same sort of ultraviolet divergences as F1:

• The factor of ( 4
y
)D−2 in Q2, which has a finite coefficient but is still not integrable in

D = 4 dimensions;

• The factors of 1
D−4(

4
y
)D−3 in Q2 and R2 which are integrable in D = 4 dimensions

but have divergent coefficients that preclude taking the unregulated limits; and

• The factors of ( 1
D−4)

2( 4
y
)D−4 in Q2 and R2 which are integrable in D = 4

dimensions but have even more divergent coefficients.

Only the leading divergence requires a new counterterm. It is handled by first

extracting another derivative and then adding zero in the form (4–2), just as we did in
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equations (4–119) and (4–121). The final result is,

−Kf2a
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. (4–141)

Comparing expressions (4–20) and (4–51) implies that the divergent part can be entirely

absorbed by choosing the coefficient c2 of the Weyl counterterm (4–7) to be,

c2 =
HD−4Γ(D

2
)

16(4π)
D
2

× 2

(D−4)(D−3)2(D−1)(D+1)
. (4–142)

Of course the divergent part agrees with [9].

It turns out that the lower divergences of F2 are canceled by the three factors we

added to Q1 to cancel its lower divergences,

δQ1 = K
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)D
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2f1c
(D−4)2
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− f1c
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}
. (4–143)

These changes in Q1 induce changes in the source term upon which we act D−1 to get

F2,

δS ≡
(D−1
D+1

){
(D−1)(2−y)(4y−y 2)δQ′′′

1 −D(D−1)(4y−y 2)δQ′′
1
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, (4–144)
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Here the coefficients are,

δsb = − 1
16
(D−2)(D−1)Df1b , (4–146)

δsc =
(D−2)(D−1)
16(D+1)

[
−(D−1)(D2−2D−4)f1b + 2(D−3)f1c

]
, (4–147)

δsd =
(D−1)2

8(D+1)

[
D3f1b − (D2+2D−4)f1c

]
, (4–148)
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δse =
(D − 2)2(D−1)2(D+2)

4(D+1)
f1c , (4–149)

δse′ = −(D−1)3

(D+1)
f1c . (4–150)

To infer the corresponding changes in the spin two quotient and remainder we

need to invert D on ( 4
y
)
D
2
+1, ( 4

y
)
D
2 and 1. The second one was given in (4–109). From

expression (4–105) we find,
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1

D

(
1
)
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1

(D−3)D(D+1)
. (4–152)

Although we want to move all the ( 4
y
)
D
2
+1 and ( 4

y
)
D
2 terms from the remainder to the

quotient, we must allow for an arbitrary amount δf2c ′ of the 1 term. Hence the changes in

the quotient and the remainder take the form,
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The various coefficients are,

δf2b =
16

(D−2)2D
× δsb , (4–155)

δf2c = −64(D−3)(D+2)
(D−2)3D

× δsb +
16
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× δsc , (4–156)

δf2d =
4(D−3)(D+2)(D+4)(3D−10)

(D−2)3D
× δsb

−4(D−3)(D+4)
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× δsc + δsd , (4–157)
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δf2e =
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× δsc + δse , (4–158)

δf2e′ = −(D−3)D(D+1)δf2c ′ + δse′ . (4–159)

It is possible to make the combination Q2 + δQ2 possess a finite unregulated limit by

choosing,
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With this choice the renormalized spin two quotient is,
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Choosing (4–160) also produces a finite result for the spin two remainder term,
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(4–162)

Acting the D = 4 Green’s function (4–103) on the remainder and adding the result to the

quotient gives our final result for the renormalized spin two structure function (recall the

definition (4–138) of the dilogarithm function),
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CHAPTER 5
FLAT SPACE RESULT

5.1 Schwinger-Keldysh Effective Field Eqns

The graviton self-energy −i [µνΣρσ](x ; x ′) is the one-particle-irreducible (1PI) 2-point

function for the graviton field hµν(t,~x). It serves to quantum correct the linearized

Einstein equation.

Dµνρσhρσ(x) +

∫
d4x ′

[
µνΣρσ

]
(x ; x ′) hρσ(x

′) =
8πG

c2
Mδµ0 δ

ν
0δ
3(~x) . (5–1)

However, this equation suffers from two embarrassments:

• It isn’t causal because the in-out self-energy is nonzero for points x ′µ which are
spacelike separated from xµ, or lie to its future; and

• It doesn’t produce real potentials hµν because the in-out self-energy has an
imaginary part.

One can get the right result for a static potential by simply ignoring the imaginary part

[76, 77, 79], but circumventing the limitations of the in-out formalism becomes more

and more difficult as time dependent sources and higher order corrections are included,

and these techniques break down entirely for the case of cosmology in which there may

not even be asymptotic vacua. It is not that the in-out self-energy is somehow “wrong”.

In fact, it is exactly the right thing to correct the Feynman propagator for asymptotic

scattering computations in flat space. The point is rather that equation (5–1) doesn’t

provide the generalization we seek of the classical field equation.

The better technique is known as the Schwinger-Keldysh formalism [84]. It provides

a way of computing true expectation values that is almost as simple as the Feynman

diagrams which produce in-out matrix elements. The Schwinger-Keldysh rules are best

stated in the context of a scalar field ϕ(x) whose Lagrangian (the space integral of its

Lagrangian density) at time t is L[ϕ(t)]. Suppose we are given a Heisenberg state |Ψ〉

whose wave functional in terms of the operator eigenkets at time t0 is Ψ[ϕ(t0)], and

we wish to take the expectation value, in the presence of this state, of a product of two
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functionals of the field operator: A[ϕ], which is anti-time-ordered, and B[ϕ], which is

time-ordered. The Schwinger-Keldysh functional integral for this is [61],

〈
Ψ
∣∣∣A[ϕ]B[ϕ]∣∣∣Ψ〉 = ⌋⌈

[dϕ+][dϕ−] δ
[
ϕ−(t1)−ϕ+(t1)

]
×A[ϕ−]B[ϕ+]Ψ

∗[ϕ−(t0)]e
i
∫ t1
t0
dt

{
L[ϕ+(t)]−L[ϕ−(t)]

}
Ψ[ϕ+(t0)] . (5–2)

The time t1 > t0 is arbitrary as long as it is later than the latest operator which is

contained in either A[ϕ] or B[ϕ].

The Schwinger-Keldysh rules can be read off from its functional representation

(5–2). Because the same field operator is represented by two different dummy functional

variables, ϕ±(x), the endpoints of lines carry a ± polarity. External lines associated with

the anti-time-ordered operator A[ϕ] have the − polarity whereas those associated with

the time-ordered operator B[ϕ] have the + polarity. Interaction vertices are either all +

or all −. Vertices with + polarity are the same as in the usual Feynman rules whereas

vertices with the − polarity have an additional minus sign. If the state |Ψ〉 is something

other than free vacuum then it contributes additional interaction vertices on the initial

value surface [67].

Propagators can be ++, +−, −+, or −−. All four polarity variations can be read off from

the fundamental relation (5–2) when the free Lagrangian is substituted for the full one.

It is useful to denote canonical expectation values in the free theory with a subscript

0. With this convention we see that the ++ propagator is just the ordinary Feynman

propagator,

i∆++(x ; x
′) =

〈
Ω
∣∣∣T(ϕ(x)ϕ(x ′))∣∣∣Ω〉

0
= i∆(x ; x ′) , (5–3)

where T stands for time-ordering and T denotes anti-time-ordering. The other polarity

variations are simple to read off and to relate to the Feynman propagator,
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i∆−+(x ; x
′) =

〈
Ω
∣∣∣ϕ(x)ϕ(x ′)∣∣∣Ω〉

0
= θ(t−t ′)i∆(x ; x ′)+θ(t ′−t)

[
i∆(x ; x ′)

]∗
, (5–4)

i∆+−(x ; x
′) =

〈
Ω
∣∣∣ϕ(x ′)ϕ(x)∣∣∣Ω〉

0
= θ(t−t ′)

[
i∆(x ; x ′)

]∗
+θ(t ′−t)i∆(x ; x ′), (5–5)

i∆−−(x ; x
′)=

〈
Ω
∣∣∣T(ϕ(x)ϕ(x ′))∣∣∣Ω〉

0
=

[
i∆(x ; x ′)

]∗
. (5–6)

Therefore we can get the four propagators of the Schwinger-Keldysh formalism from the

Feynman propagator once that is known.

Because external lines can be either + or − in the Schwinger-Keldysh formalism,

every 1PI N-point function of the in-out formalism gives rise to 2N 1PI N-point functions

in the Schwinger-Keldysh formalism. For every classical field φ(x) of an in-out effective

action, the coorresponding Schwinger-Keldysh effective action must depend upon two

fields — call them φ+(x) and φ−(x)— in order to access the appropriate 1PI function

[85]. For the scalar paradigm we have been considering this effective action takes the

form,

Γ[φ+,φ−] = S [φ+]− S [φ−]−
1

2

∫
d4x

∫
d4x ′

×

 φ+(x)M
2
++
(x ; x ′)φ+(x

′) + φ+(x)M
2
+−(x ; x

′)φ−(x
′)

+φ−(x)M
2
−+(x ; x

′)φ+(x
′) + φ−(x)M

2
−−(x ; x

′)φ−(x
′)

+O(φ3±), (5–7)

where S is the classical action. The effective field equations are obtained by varying with

respect to φ+ and then setting both fields equal [85],

δΓ[φ+,φ−]

δφ+(x)

∣∣∣∣∣
φ±=φ

=
[
∂2 −m2

]
φ(x)−

∫
d4x ′

[
M2
++
(x ; x ′) +M2

+−(x ; x
′)
]
φ(x ′) +O(φ2). (5–8)

The two 1PI 2-point functions we would need to quantum correct the linearized scalar

field equation are M2
++
(x ; x ′) and M2

+−(x ; x
′). Their sum in (5–8) gives effective field

equations which are causal in the sense that the two 1PI functions cancel unless x ′µ lies

on or within the past light-cone of xµ. Their sum is also real, which neither 1PI function is

separately.
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As mentioned before, the point of the present paper is to lay the groundwork for a

computation of the one loop correction to the force of gravity on de Sitter background.

The graviton contribution to the self-energy was computed some years ago [86] but has

never been used in the effective field equations. A computation of the scalar contribution

is underway.

Although the current computation will be the first to explore corrections to a force

law, the linearized effective field equations have been studied on de Sitter background

for many simpler models. In scalar quantum electrodynamics the one loop vacuum

polarization was computed and used to correct for the propagation of dynamical photons

[49, 52], but not yet for the Coulomb force. The one loop scalar self-mass-squared has

also been used to correct for the propagation of charged, massless, minimally coupled

scalars [87]. Both the fermion [55] and scalar [88] 1PI 2-point functions of Yukawa theory

have been computed and used to correct the mode functions. The one and two loop

scalar self-mass-squared of λϕ4 theory has been computed and used to correct for the

propagation of massless, minimally coupled scalars [57]. In Einstein + Dirac the one

loop fermion self-energy has been computed and used to correct the fermion mode

function [58]. And the same thing has been done for scalars in Scalar + Einstein [59].

5.2 Solving for the Potentials

We begin by expressing the linearized effective field equations in a form which is

both manifestly real and causal. We then explain how these equations can be solved

perturbatively. The hardest step is integrating the one loop self-energy against the tree

order solution. The section closes by working out the two one loop potentials.

5.2.1 Achieving A Manifestly Real and Causal Form

The basis for our work is a position space result for the one loop contribution to the

1PI graviton 2-point function from a loop of massless, minimally coupled scalars, using

dimensional regularization and a minimal choice for the higher derivative counterterms

[61]. (Previous Schwinger-Keldysh computations of this quantity had been given in
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momentum space [89] which is not as useful for us.) All four polarization variations take

the form, [
µνΣρσ

±±

]
(x ; x ′) = DµνρσΣ±±(x ; x

′) , (5–9)

where the 4th-order, tensor-differential operator is,

Dµνρσ ≡
[
ηµν∂2−∂µ∂ν

][
ηρσ∂2−∂ρ∂σ

]
+
1

3

[
ηµ(ρησ)ν∂4−2∂(µην)(ρ∂σ)+∂µ∂ν∂σ∂ρ

]
. (5–10)

The four bi-scalars are,

Σ±±(x ; x
′) = (±)(±) iκ

2∂2

5120π4

[
ln(µ2∆x2±±)

∆x2±±

]
, (5–11)

where µ2 is the usual scale of dimensional regularization, κ2 ≡ 16π~G/c3 is the

loop-counting parameter of quantum gravity and the four Schwinger-Keldysh length

functions are,

∆x2
++
(x ; x ′) ≡

∥∥∥~x−~x ′
∥∥∥2 − c2(|t−t ′|−iε)2 , (5–12)

∆x2
+−(x ; x

′) ≡
∥∥∥~x−~x ′

∥∥∥2 − c2(t−t ′+iε)2 , (5–13)

∆x2−+(x ; x
′) ≡

∥∥∥~x−~x ′
∥∥∥2 − c2(t−t ′−iε)2 , (5–14)

∆x2−−(x ; x
′) ≡

∥∥∥~x−~x ′
∥∥∥2 − c2(|t−t ′|+iε)2 . (5–15)

Although the divergent parts of (5–9) have been subtracted off [61], it should be noted

that they agree exactly with those originally found by ’t Hooft and Veltman [9].

We can achieve a significant simplification by first extracting another d’Alembertian

from (5–11),

Σ±±(x ; x
′) = (±)(±) iκ

2∂4

40960π4

[
ln2(µ2∆x2±±)− 2 ln(µ2∆x2±±)

]
. (5–16)

Now define the position and temporal separations, and the associated invariant

length-squared,

∆r ≡ ‖~x−~x ′‖ , ∆t ≡ t−t ′ , ∆x2 ≡ ∆r 2 − c2∆t2 . (5–17)
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The ++ and +− logarithms can be expanded in terms of their real and imaginary parts,

ln(µ2∆x2
++
) = ln(µ2|∆x2|) + iπ θ(−∆x2) , (5–18)

ln(µ2∆x2
+−) = ln(µ2|∆x2|)− iπ sgn(∆t)θ(−∆x2) . (5–19)

The ++ and +− logarithms agree for spacelike separation (∆x2 > 0), and for t ′ > t,

whereas they are complex conjugates of one another for x ′µ = (ct ′, ~x ′) in the past

light-cone of xµ = (ct,~x). Hence the sum of Σ++(x ; x ′) and Σ+−(x ; x ′) is both causal and

real,

Σ++(x ; x
′) + Σ+−(x ; x

′) = − κ2∂4

10240π3
θ(c∆t−∆r)

[
ln(−µ2∆x2)−1

]
. (5–20)

Let us assume that the state is released in free vacuum at time t = 0. Our final

result for the linearized, one loop effective field equations is,

Dµνρσhρσ(t,~x)−
κ2Dµνρσ∂4

10240π3

∫ t

0

dct ′
∫
d3x ′ θ(c∆t−∆r)

×
[
ln(−µ2∆x2)−1

]
hρσ(t

′, ~x ′) =
8πGM

c2
δµ0 δ

ν
0δ
3(~x) . (5–21)

Recall that κ2 ≡ 16π~G/c3 is the loop counting parameter of quantum gravity, the

Lichnerowitz operator Dµνρσ was given in (3–35) and the 4th order differential operator

Dµνρσ was given in (5–10).

5.2.2 Solving the Equation Perturbatively

There is no point in trying to solve equation (5–21) exactly because it only includes

the one loop graviton self-energy. A better approach is to seek a perturbative solution in

powers of the loop counting parameter κ2,

hµν(t,~x) =
∞∑
`=0

κ2`h(`)µν (t,~x) . (5–22)
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Of course the ` = 0 term obeys the linearized Einstein equation whose solution in

Schwarzschild coordinates is,

Dµνρσh(0)ρσ (t,~x) =
8πGM

c2
δµ0 δ

ν
0δ
3(~x) =⇒ h

(0)
00 =

2GM

c2r
, h
(0)
ij =

2GM

c2r
r̂ i r̂ j . (5–23)

The one loop correction h(1)µν obeys the equation,

Dµνρσh(1)ρσ (t,~x) =
Dµνρσ∂4

10240π3

∫ t

0

dt ′
∫
d3x ′ θ(∆t−∆r)

[
ln(−µ2∆x2)−1

]
h(0)ρσ (t

′, ~x ′) . (5–24)

Finding the two loop correction h(2)µν would require the two loop self-energy, which we do

not have, so h(1)µν is as high as we can go.

5.2.3 Correction to Dynamical Gravitons in Flat Space

The one loop contribution to the graviton self-energy from MMC scalars in a flat

background was first computed by ‘t Hooft and Veltman in 1974 [9]. When renormalized

and expressed in position space using the Schwinger-Keldysh formalism the result takes

the form [61], (this result was reviewed in section 4.2)

[
µνΣρσ

flat

]
(x ; x ′) = ΠµνΠρσF0(∆x

2) +
[
Πµ(ρΠσ)ν−1

3
ΠµνΠρσ

]
F2(∆x

2) . (5–25)

Here Πµν ≡ ∂µ∂ν − ηµν∂2 and the two structure functions are,

F0(∆x
2) =

iκ2

(4π)4
∂2

9

[
ln(µ2∆x2

++
)

∆x2
++

−
ln(µ2∆x2

+−)

∆x2
+−

]
, (5–26)

F2(∆x
2) =

iκ2

(4π)4
∂2

60

[
ln(µ2∆x2

++
)

∆x2
++

−
ln(µ2∆x2

+−)

∆x2
+−

]
(5–27)

The two coordinate intervals are,

∆x2
++

≡
∥∥∥~x−~x ′

∥∥∥2 − (
|x0−x ′0|−iε

)2
, (5–28)

∆x2
+− ≡

∥∥∥~x−~x ′
∥∥∥2 − (

x0−x ′0+iε
)2
. (5–29)

Of course this same form follows from taking the flat space limit of the de Sitter result

summarized in the previous section.

75



In flat space, the mode function for a plane wave graviton with wave vector ~k is,

hflatµν (x) = ερσ(~k)
1√
2k
e−ikx

0+i~k·~x . (5–30)

The one loop correction to this (from MMC scalars) is sourced by,

(
Source

)µν

(x) =

∫
dx4x ′

[
µνΣρσ

flat

]
(x ; x ′)hflatρσ (x

′) . (5–31)

It might seem natural to extract the various derivatives with respect to xµ from the

integration, for example,∫
d4x ′ΠµνΠρσF0(∆x

2)× hflatρσ (x
′)

=
iκ2

(4π)4
ΠµνΠρσ ∂

2

9

∫
d4x ′

[
ln(µ2∆x2

++
)

∆x2
++

−
ln(µ2∆x2

+−)

∆x2
+−

]
× hflatρσ (x

′) . (5–32)

That would reduce the source (5–31) to a tedious set of integrations, followed by some

equally tedious differentiations.

The point of this sub-section is that a more efficient strategy is to first convert all the

xµ derivatives to x ′µ derivatives — which can be done because they act on functions of

∆x2. Then ignore surface terms and partially integrate the x ′µ derivatives to act upon

hflatρσ (x
′). For example, doing this for the spin zero contribution (5–32) gives,∫
d4x ′ΠµνΠρσF0(∆x

2)× hflatρσ (x
′)

−→ iκ2

(4π)4

∫
d4x ′

[
ln(µ2∆x2

++
)

∆x2
++

−
ln(µ2∆x2

+−)

∆x2
+−

]
× ∂′2

9
Π′µνΠ′ρσhflatρσ (x

′) . (5–33)

Because the graviton mode function is both transverse and traceless, we have

Π′ρσhflatρσ (x
′) = 0. The spin two contribution is only a little more complicated,∫
d4x ′

[
Πµ(ρΠσ)ν − 1

3
ΠµνΠρσ

]
F2(∆x

2)× hflatρσ (x
′)

−→ iκ2

(4π)4

∫
d4x ′

[
ln(µ2∆x2

++
)

∆x2
++

−
ln(µ2∆x2

+−)

∆x2
+−

]
× ∂′6

60
hµνflat(x

′) . (5–34)

This also vanishes because ∂′2hflatρσ (x
′) = 0.
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In expressions (5–33) and (5–34) we have employed a rightarrow, rather than an

equals sign, because the surface terms produce by partial integration were ignored.

There are no surface terms at spatial infinity in the Schwinger-Keldysh formalism

because the ++ and +− terms cancel for spacelike separation. The ++ and +−

contributions also cancel when x ′0 > x0, so there are no future surface terms. However,

there are nonzero contributions from the initial value surface.1 We assume that all such

contributions are absorbed into perturbative corrections to the initial state, such as has

recently been worked out for a MMC scalar with quartic self-interaction [102].

5.2.4 The One Loop Source Term

In this subsection we evaluate the right hand side of equation(5–24), which sources

the one loop correction h(1)µν (t,~x). This is done in three steps: we first perform the

integral, then act the ∂4, and finally act the Dµνρσ.

From the form of the tree order potentials (5–23) it is apparent that we need two

integrals. The first comes from h(0)00 ,∫ t

0

dt ′
∫
d3x ′ θ(∆t−∆r)

[
ln(−µ2∆x2)−1

]
× 1

‖~x ′‖
≡ F (t, r) . (5–35)

The second integral derives from the other nonzero potential h(0)ij . Its trace part is

obviously the same as F (t, r), and we shall call its traceless part G(t, r),∫ t

0

dt ′
∫
d3x ′ θ(∆t−∆r)

[
ln(−µ2∆x2)−1

]
× r̂

′i r̂ ′j

‖~x ′‖

≡ 1
2

[
δij− r̂ i r̂ j

]
F (t, r)− 1

2

[
δij−3r̂ i r̂ j

]
G(t, r) , (5–36)

=
1

3
δijF (t, r) +

1

2

[
3r̂ i r̂ j−δij

][
G(t, r)−1

3
F (t, r)

]
. (5–37)

1 For a two loop example, see [101].
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The integrals are tedious but straightforward and give the following results for F (t, r) and

the combination G(t, r)− 1
3
F (t, r),

F (t, r) =
4π

r

{
r 4

6
ln(2µr)−25

72
r 4+
11

18
r 3ct−11

18
rc3t3 +

[ 1
12
(ct+r)4

− r
6
(r+ct)3

]
ln
[
µ(ct+r)

]
−
[ 1
12
(ct−r)4+ r

6
(ct−r)3

]
ln
[
µ(ct−r)

]}
, (5–38)

G(t, r)−F (t, r)
3

=
4π

r

{
−r

4

9
ln(2µr)+

23

108
r 4−199
675
r 3ct− 13

135
rc3t3+

2c5t5

45r

+
[
−(ct+r)

6

45r 2
+
2

15

(ct+r)5

r
− 5
18
(ct+r)4+

2

9
r(ct+r)3

]
ln
[
µ(ct+r)

]
+
[(ct−r)6
45r 2

+
2

15

(ct−r)5

r
+
5

18
(ct−r)4+2

9
r(ct−r)3

]
ln
[
µ(ct−r)

]}
. (5–39)

The next step is acting the two d’Alembertians. This purges all the time dependent

terms,

∂4F (t, r) =
4π

r
× 4 ln(2µr) , (5–40)

∂4

{
1

3
δijF (t, r) +

1

2

[
3r̂ i r̂ j − δij

][
G(t, r)−1

3
F (t, r)

]}

=
4π

r

{
4

3
δij ln(2µr) +

[
3r̂ i r̂ j−δij

][4
3
ln(2µr)−2

]}
. (5–41)

At this stage the linearized, one loop effective field equations (5–21) take the form,

Dµνρσh(1)ρσ (t,~x) =
GM

1280π2c2
Dµνρσfρσ(~x) , (5–42)

where the nonzero components of the tensor fρσ(~x) are,

f00(~x) =
4

r
ln(2µr) , (5–43)

fij(~x) = δij × 4
3

ln(2µr)

r
+

[
3r̂ i r̂ j−δij

][4
3

ln(2µr)

r
−2
r

]
. (5–44)
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It remains only to act the operator Dµνρσ on fρσ(~x). The first two derivatives give,

∂ρ∂σfρσ =
4

r 3
, ∂j fij = r̂

i [4 ln(2µr)−4]
r 2

, (5–45)

∂2f00 = − 4
r 3
, ∂2fij = δij

[8 ln(2µr)−12]
r 3

− r̂ i r̂ j [24 ln(2µr)−32]
r 3

, (5–46)

∂i∂j f00 = ∂k∂i fjk , ∂i∂k fjk = δij
[4 ln(2µr)−4]

r 3
− r̂ i r̂ j [12 ln(2µr)−16]

r 3
. (5–47)

The source term can then be expressed in terms of two more derivatives of the

quantities gµν(~x) ≡ ∇2fµν(~x) and g(~x) ≡ ∂i∂j fij(~x),

Dµνρσh(1)ρσ (t,~x) =
GM

1280π2c2

{
−ηµν∇2g + 4

3
∂µ∂νg +

1

3
∇2gµν − 2

3
∂ρ∂

(µgν)ρ
}
. (5–48)

The final reduction employs the identities,

∇2g = 24
r 5
, ∂i∂jg = −12

r 5
δij+
60

r 5
r̂ i r̂ j , (5–49)

∇2g00 = −24
r 5
, ∇2gij = −48

r 5
δij+
120

r 5
r̂ i r̂ j , (5–50)

∂kgjk = −12
r 4
r̂ j , ∂i∂kgjk = −12

r 5
δij+
60

r 5
r̂ i r̂ j . (5–51)

The nontrivial components of the effective field equations are,

D00ρσh(1)ρσ (t,~x) =
GM

80π2c2
× 1
r 5
, (5–52)

Dijρσh(1)ρσ (t,~x) =
GM

80π2c2
×

{
−3δ

ij

r 5
+
5r̂ i r̂ j

r 5

}
. (5–53)

5.2.5 The One Loop Potentials

We wish to express the one loop potentials in Schwarzschild coordinates so their

nonzero components take the form,

h
(1)
00 (~x) = a(r) , h

(1)
ij (~x) = r̂

i r̂ jb(r) . (5–54)
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Acting the Lichnerowitz operator (3–35) on these gives,

D00ρσh(1)ρσ =
b′

r
+
b

r 2
, (5–55)

Dijρσh(1)ρσ = δij
[
−a

′′

2
− a

′

2r
− b

′

2r

]
+ r̂ i r̂ j

[a′′
2

− a
′

2r
+
b′

2r
− b
r 2

]
. (5–56)

Comparing (5–55) with (5–52) implies,

b(r) =
GM

160π2c2
×− 1
r 3
. (5–57)

Substituting this in (5–56) and comparing with (5–53) implies,

a(r) =
GM

160π2c2
× 1
r 3
. (5–58)

Combining the classical and quantum corrections gives the following total results for the

potentials,

h00(~x) =
2GM

c2r

{
1 +

~G
20πc3r 2

+O
(κ4
r 4

)}
, (5–59)

hij(~x) =
2GM

c2r

{
1− ~G
20πc3r 2

+O
(κ4
r 4

)}
r̂ i r̂ j . (5–60)

Expression (5–59) agrees with equation (3.9) of Hamber and Liu [20], and also with

equation (32) of [90]. When transformed to de Donder gauge our results (5–59)-(5–60)

give the same trace obtained in equation (59) by Dalvit and Mazzitelli [91].
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CHAPTER 6
QUANTUM CORRECTIONS TO DYNAMICAL GRAVITONS

6.1 The Effective Field Equations

The purpose of this section is to present the effective field equation which we solve

in the next section. We begin by reviewing some useful facts about the background

geometry. We then give our recently derived result for the one loop MMC scalar

contribution to the graviton self-energy [98]. The section closes with a discussion of

the Schwinger-Keldysh effective field equations and how one solves them perturbatively.

6.1.1 The Schwinger-Keldysh Effective Field Equations

Because the graviton self-energy is the 1PI graviton 2-point function, it gives the

quantum correction to the linearized Einstein equation,

√
−gDµνρσhρσ(x)−

∫
d4x ′

[
µνΣρσ

]
(x ; x ′)hρσ(x

′) =
1

2
κ
√
−g T µν

lin (x) , (6–1)

Here Dµνρσ is the Lichnerowicz operator, (3–35) specialized to de Sitter background

Dµνρσ ≡ D(ρgσ)(µDν) − 1
2

[
gρσDµDν+gµνDρDσ

]
+
1

2

[
gµνgρσ−gµ(ρgσ)ν

]
D2 + (D−1)

[1
2
gµνgρσ−gµ(ρgσ)ν

]
H2 , (6–2)

and Dµ is the covariant derivative operator in the background geometry. The point of the

Schwinger-Keldysh formalism is explained in Sec 5.1. Here we give the expression for

the de Sitter case. At the one loop order we are working [µνΣρσ]++(x ; x
′) agrees exactly

with the in-out result given in the previous sub-section. To get [µνΣρσ]+−(x ; x
′), at this

order, one simply adds a minus sign and replaces the de Sitter length function y(x ; x ′)

everywhere with,

y(x ; x ′) −→ y+−(x ; x ′) ≡ H2a(η)a(η′)
[
‖~x−~x ′‖2 − (η−η′+iε)2

]
. (6–3)

It will be seen that the ++ and +− self-energies cancel unless the point x ′µ is on or

inside the past light-cone of xµ. That makes the effective field equation (6–1) causal.
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When x ′µ is on or inside the past light-cone of xµ the +− self-energy is the complex

conjugate of the ++ one, which makes the effective field equation (6–1) real. This also

effects a great simplification in the structure functions because only those terms with

branch cuts in y can make nonzero contributions, for example,

ln(y++)− ln(y+−) = 2πiθ
(
η−η′ − ‖~x−~x ′‖

)
. (6–4)

6.1.2 Perturbative Solution

Because we only know the self-energy at one loop order, all we can do is to solve

(6–1) perturbatively by expanding the graviton field and the self-energy in powers of κ2,

hµν(x) = h
(0)
µν (x) + κ2h(1)µν (x) +O(κ

4) . (6–5)

Of course h(0)µν (x) obeys the classical, linearized Einstein equation. Given this solution,

the corresponding one loop correction is defined by the equation,

√
−g(x)Dµνρσκ2h(1)ρσ (x) =

∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′) . (6–6)

The classical solution for a dynamical graviton of wave vector ~k is [70],

h(0)ρσ (x) = ερσ(~k)u(η, k)e
i~k·~x , (6–7)

where the tree order mode function is,

u(η, k) =
H√
2k3

[
1− ik
Ha

]
exp

[ ik
Ha

]
, (6–8)

and the polarization tensor obeys all the same relations as in flat space,

0 = ε0µ = kiεij = εjj and εijε
∗
ij = 1 . (6–9)

6.2 Computing the One Loop Source

The point of this section is to evaluate the one loop source term on the right hand

side of equation (6–6) for a dynamical graviton (6–7)-(6–9). We begin by drawing
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inspiration from what happens in the flat space limit. Our de Sitter analysis commences

by partially integrating the projectors. This results in considerable simplification but the

plethora of indices is still problematic. To effect further simplification we extract and

partially integrate another d’Alembertian, whereupon the xµ projector can be acted on

the residual structure function to eliminate four contractions. At this point we digress to

derive some important identities concerning covariant derivatives of the Weyl tensor.

The final reduction reveals zero net result.

6.2.1 Partial Integration

We now start to evaluate the one loop source term (6–6) for a dynamical graviton,∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′)

= i

∫
d4x ′

√
−g(x)Pµν(x)

√
−g(x ′)Pρσ(x ′)

{
F0

}
h(0)ρσ (x

′)

+2i

∫
d4x ′

√
−g(x)Pµν

αβγδ(x)
√
−g(x ′)Pρσ

κλθφ(x
′)

{
T ακT βλT γθT δφF2

}
h(0)ρσ (x

′) . (6–10)

In this expression and henceforth we simply write “F0” and “F2” to stand for the full

Schwinger-Keldysh expressions,

F0 ≡ F0(y++)−F0(y+−) , F2 ≡ F2(y++)−F2(y+−) . (6–11)

The integral (6–10) can be simplified in two steps. First, the projectors Pµν(x) and

Pµν
αβγδ(x), which act on a function of xµ, can be pulled outside the integration over

x ′µ. Second, the projectors Pρσ(x ′) and Pρσ
κλθφ(x

′), which act on x ′µ, can be partially

integrated to act on the graviton wave function h(0)ρσ (x
′). After these two steps, the

integral (6–10) becomes,∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′)

= i
√
−g(x)Pµν(x)

∫
d4x ′

√
−g(x ′)F0

{
Pρσ(x ′)h(0)ρσ (x

′)
}

+2i
√
−g(x)Pµν

αβγδ(x)

∫
d4x ′

√
−g(x ′) T ακT βλT γθT δφF2

{
Pρσ

κλθφ(x
′)h(0)ρσ (x

′)

}
. (6–12)
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Note that the spin zero term drops out due to the tranversality and tracelessness of

the dynamical graviton, h(0)ρσ :

Pρσh(0)ρσ =
{
DρDσ −

[
D2 + (D−1)H2

]
gρσ

}
h(0)ρσ = 0 . (6–13)

Thus we only have the spin two term, which gives the linearized Weyl tensor,

Pρσ
κλθφ(x

′)h(0)ρσ (x
′) = δCκλθφ(x

′) . (6–14)

The one loop source term then reduces to the integral,∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′)

= 2i
√
−g(x)Pµν

αβγδ(x)

∫
d4x ′

√
−g(x ′) T ακT βλT γθT δφF2δCκλθφ(x

′) . (6–15)

6.2.2 Extracting Another d’Alembertian

A challenge to evaluating expression (6–15) is the complicated tensor structure of

the external projector Pµν
αβγδ(x) acting on the internal factors of T ακ · · · F2. Recall from

the flat space limit that all of this was converted to derivatives with respect to x ′µ and

then partiall integrated onto the graviton wave function to give zero. To follow this on

de Sitter we must make the structure function more convergent by extracting a factor

of ′ and then partially integrating it onto the graviton wave function. After this the

external projector can be acted, which eliminates four indices, and a final further partial

integration can be performed.

The first step is extracting the extra d’Alembertian,

F2 =
′

H2
F̂2 . (6–16)
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We next commute the ′ through the factor of T ακT βλT γθT δφ:

T ακT βλT γθT δφ
′

H2
F̂2 =

( ′

H2
+4

)[
T ακT βλT γθT δφF̂2

]
− 1
H2

F̂ ′
2

{
∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ + · · ·+ T ακT βλT γθ ∂y

∂xδ

∂y

∂x ′φ

}

− 1

2H2
F̂2

{
gαβ

∂y

∂x ′κ

∂y

∂x ′λ
T γθT δφ + gαγ

∂y

∂x ′κ

∂y

∂x ′θ
T βλT δφ

+gαδ
∂y

∂x ′κ

∂y

∂x ′φ
T βλT γθ + gβγ

∂y

∂x ′λ

∂y

∂x ′θ
T ακT δφ

+gβδ
∂y

∂x ′λ

∂y

∂x ′φ
T ακT γθ + gγδ

∂y

∂x ′θ

∂y

∂x ′φ
T ακT βλ

}
. (6–17)

Exploiting the tracelessness of the Weyl tensor on any two indices, and its antisymmetry

on the first two and last two indices, gives,

Pµν
αβγδT

ακT βλT γθT δφ
′

H2
F̂2δCκλθφ = P

µν
αβγδ

′

H2

[
F̂2T ακT βλT γθT δφ

]
δCκλθφ

= Pµν
αβγδ

{
4F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′
2

∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ

}
δCκλθφ . (6–18)

For the first term of (6–18) we can partially integrate the ′ onto the linearized Weyl

tensor. Then the one loop source term becomes∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′)

= 2i
√
−g(x)Pµν

αβγδ(x)

∫
d4x ′

√
−g(x ′)

{
T ακT βλT γθT δφF̂2

′

H2
δCκλθφ(x

′)

+

[
4F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′
2

∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ

]
δCκλθφ(x

′)

}
. (6–19)

This sets the stage for acting the outer projector.

6.2.3 Derivatives of the Weyl Tensor

At this point it is useful to make a short digression on the covariant derivatives

of the Weyl tensor. In this sub-section we use gµν for the full metric, not the de Sitter

background. All curvatures are similarly for the full metric.
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The Bianchi identity tells us,

DεRαβγδ +DγRαβδε +DδRαβεγ = 0 . (6–20)

If the stress-energy vanishes, all solutions to the Einstein equation obey,

Rµν −
1

2
gµνR = −3H2gµν =⇒ Rµν = 3H

2gµν . (6–21)

In D = 3 + 1 the Weyl tensor can be expressed in terms of the other curvatures as,

Cαβγδ = Rαβγδ −
1

2

(
gαγRβδ − gγβRδα + gβδRαγ − gδαRγβ

)
+
1

6

(
gαγgβδ − gαδgβγ

)
R . (6–22)

Now note that the covariant derivative of the metric vanishes. Substituting (6–21) in

(6–22) implies,

DεCαβγδ = DεRαβγδ . (6–23)

Combining this relation into (6–20) gives,

DεCαβγδ +DγCαβδε +DδCαβεγ = 0 . (6–24)

Our first key identity derives from contracting α into ε, and exploiting the tracelessness of

the Weyl tensor,

DαCαβγδ = 0 . (6–25)

Our second identity derives from contracting Dε into relation (6–24), commuting

derivatives and then using relation (6–25),

Cαβγδ = −DρDγC
ρ

αβδ +DρDδC
ρ

αβγ , (6–26)

= 6H2Cαβγδ − Rρ σ
αγ Cρβδσ + R

ρ σ
γβ Cρδασ

−Rρ σ
βδ Cραγσ + R

ρ σ
δα Cργβσ − Rρσ

γδCαβρσ . (6–27)

Relations (6–25) and (6–27) hold, to all orders in the graviton field, for any solution

to the source-free Einstein equations. Taking the first order in the graviton field amounts
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to just replacing the full Weyl tensor by the linearized Weyl δCαβγδ we have been using,

replacing the full covariant derivative operators by the covariant derivatives in de Sitter

background and replacing the full Riemann tensor by its de Sitter limit. When these

things are done the two identities become,

DαδCαβγδ = 0 +O(h2) , (6–28)

δCαβγδ = 6H2δCαβγδ +O(h
2) . (6–29)

Note also that if the stress-energy had been nonzero the right hand sides of relations

(6–28) and (6–29) would have contained simple combinations of derivatives of the stress

tensor.

6.2.4 The Final Reduction

We are now ready to act the outer projector on the remaining terms,∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′) = 2i
√
−g(x)

∫
d4x ′

√
−g(x ′) δCκλθφ(x

′){
Pµν

αβγδ(x)

[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′
2

∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ

]}
. (6–30)

The second line of this expression is quite complicated by itself, but it is greatly

simplified when contracted into the linearized Weyl tensor,

δCκλθφ(x
′)Pµν

αβγδ(x)

[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′
2

∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ

]
= δCκλθφ(x

′)

{
∂y

∂x ′κ

∂y

∂x ′θ
T λ(µT ν)φf1(y) +

∂y

∂x ′κ

∂y

∂x ′φ
T λ(µT ν)θf2(y)

+
∂y

∂x ′λ

∂y

∂x ′θ
T κ(µT ν)φf3(y) +

∂y

∂x ′λ

∂y

∂x ′φ
T κ(µT ν)θf4(y)

}
. (6–31)
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Here the functions fi(y) are,

f1=−125F̂2+115(2−y)F̂ ′
2−(68− 116y + 29y 2)F̂ ′′

2−2(2−y)(4y−y 2)F̂ ′′′
2

f2=−75
2
F̂2+

69

2
(2−y)F̂ ′

2−(28− 44y + 11y 2)F̂ ′′
2−(2−y)(4y−y 2)F̂ ′′′

2

f3=−85
2
F̂2+

15

2
(2−y)F̂ ′

2

f4=−5F̂2−13(2−y)F̂ ′
2−
5

2
(4y−y 2)F̂ ′′

2 (6–32)

Changing the dummy indices in (6–31) gives,

δCκλθφ(x
′)Pµν

αβγδ(x)

[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′
2

∂y

∂xα

∂y

∂x ′κ
T βλT γθT δφ

]
=

∂y

∂x ′κ

∂y

∂x ′θ
T λ(µT ν)φf (y)δCκλθφ(x

′) . (6–33)

Here the function f (y) is,

f (y)=−50F̂2+60(2−y)F̂ ′
2−(40− 62y +

31

2
y 2)F̂ ′′

2−(2−y)(4y−y 2)F̂ ′′′
2 . (6–34)

The final reduction is accomplished by one more partial integration. Let us define

the integral I [f ] of a function f (y) by the relations,

∂y

∂x ′κ
f (y) ≡ ∂

∂x ′κ
I [f ](y) such that

∂I [f ]

∂y
= f (y) . (6–35)

Then the one loop source becomes,∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′)

= 2i
√
−g(x)

∫
d4x ′

√
−g(x ′) ∂y

∂x ′κ
f (y)

∂y

∂x ′θ
T λ(µT ν)φδCκλθφ(x

′) (6–36)

= −2i
√
−g(x)

∫
d4x ′

√
−g(x ′)I [f ]

{
D2y

Dx ′κDx
′
θ

T λ(µT ν)φδCκλθφ(x
′)

+
DT λ(µT ν)φ

Dx ′κ

∂y

∂x ′θ
δCκλθφ(x

′) +
∂y

∂x ′θ
T λ(µT ν)φDκδCκλθφ(x

′)

}
. (6–37)
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The first and second terms include the metric,

D2y

Dx ′κDx
′
θ

= H2(2− y)gκθ(x ′), DT λ(µT ν)φ

Dx ′κ
=
1

2

∂y

∂x(µ
T ν)(φgλ)κ(x ′) , (6–38)

so they give zero when contracted into the linearized Weyl tensor. The third term

vanishes by the transversality of the linearized Weyl tensor (for dynamical gravitons

only) which we showed in (6–25). Hence the one loop source term for a dynamical

graviton is zero: ∫
d4x ′

[
µνΣρσ

]
(x ; x ′)h(0)ρσ (x

′) = 0 . (6–39)

Before concluding we should comment on the validity of our result (6–39), in view

of the enormous difference between de Sitter and the actual expansion history of the

universe. Of course equation (6–1) is correct for any geometry, but we only know the

graviton self-energy for de Sitter background. This does not make any difference for

cosmologically observable tensor perturbations for two reasons:

• As explained section 1.1, de Sitter is an excellent approximation to primordial
inflation up until cosmologically observable perturbations experience first horizon
crossing. After this time the de Sitter approximation breaks down, but those
perturbations are almost constant.

• Our result (6–15) is valid for any geometry, and the linearized Weyl tensor vanishes
for constant perturbations. So there is no contribtuion from the portion of the
integration which derives from times after the end of inflation.

To see the second point, note that general coordinate invariance requires matter

contributions to the graviton self-energy to take the form (4–51), provided one uses

expressions (4–12)-(4–13) to define the projectors for a general metric, and provided

the general form of expression (4–52) is related to the geodetic length function through

(2–14). That form is all we required to derive equation (6–15).
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CHAPTER 7
CONCLUSION

We have computed the one loop contribution to the graviton self-energy from

a massless, minimally coupled scalar on a locally de Sitter background. We used

it to solve the one loop-corrected, linearized Einstein field equations to study the

effect of inflationary scalars on dynamical gravitons. The computation was done using

dimensional regularization and renormalized by absorbing the divergences with BPHZ

counterterms.

The graviton self-energy has been given in two forms. The first form (3–11) is

fully dimensionally regulated, with the ultraviolate divergences neither localized nor

subtracted off with counterterms. This version of the result agrees with the stress tensor

correlator recently computed by Perez-Nadal, Roura and Verdaguer [99]. Our second

form is fully renormalized, with the unregulated limit taken,

−i
[
µνΣρσ

ren

]
(x ; x ′) =

√
−g(x)Pµν(x)

√
−g(x ′)Pρσ(x ′)

[
F1R(y)

]
+2

√
−g(x)Pµν

αβγδ(x)
√

−g(x ′)Pρσ
κλθφ(x

′)
[
T ακT βλT γθT δφF2R(y)

]
. (7–1)

In this expression the spin zero operator Pµν was defined in (4–14), the spin two

operator Pµν
αβγδ was defined in (4–15), and the bitensor T ακ was given in (4–52). Our

results for the renormalized spin zero and spin two structure functions are expressions

(4–139) and (4–163), respectively.

An interesting application of this work is the transverse-traceless projector (4–15),

which played a crucial role in the recent solution for the graviton propagator in de

Donder gauge [103, 104]. It should be noted that equations (4–139) and (4–163) are the

first (and so far only) fully renormalized results for the graviton structure functions on de

Sitter background. All previous results [86, 99] have been specialized to non-covincident

points, and so cannot be used in the effective field equations.
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Our second form (7–1) is manifestly transverse, as required by gauge invariance.

It is also de Sitter invariant, despite the fact that the massless, minimally coupled

scalar propagator breaks de Sitter invariance [62], because the de Sitter breaking term

drops out of mixed second derivatives (2–32). Our result agrees with the flat space

limit [61]. And the divergent parts of the counterterms we used to subtract off the

divergences agree with those found long ago by ‘t Hooft and Veltman [9]. We actually

included finite renormalizations of Newton’s constant and of the cosmological constant.

Such renormalizations are presumably necessary when considering the effective

field equations of quantum gravity if the parameters Λ and G are to have their correct

physical meanings.

The point of this exercise is to discover whether or not the inflationary production of

scalars has a significant effect on gravitational radiation and the force of gravity. In order

to check this we have employed the quantum-corrected linearized Einstein equation,

√
−gDµνρσhρσ(x)−

∫
d4x ′

[
µνΣρσ

ren

]
(x ; x ′)hρσ(x

′) =
1

2
κ
√

−g T µν
lin (x) , (7–2)

where Dµνρσ is the Lichnerowicz operator (3–35) specialized to de Sitter background.

Because we only know the self-energy at order κ2, all we can do is to solve (6–1)

perturbatively by expanding the graviton field and the self-energy in powers of κ2,

hµν(x) = h(0)µν (x) + κ2h(1)µν (x) +O(κ
4) , (7–3)[

µνΣρσ
ren

]
(x ; x ′) = κ2

[
µνΣρσ

1

]
(x ; x ′) +O(κ4) . (7–4)

Of course h(0)µν (x) obeys the classical, linearized Einstein equation. Given this solution,

the corresponding one loop correction is defined by the equation,

√
−g(x)Dµνρσh(1)ρσ (x) =

∫
d4x ′

[
µνΣρσ

1

]
(x ; x ′)h(0)ρσ (x

′) . (7–5)
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For a dynamical graviton of wave vector ~k , the classical 0th order solution takes the

form [70],

h(0)ρσ (x) = ερσ(~k)a
2u(η, k)e i

~k·~x , (7–6)

where the tree order mode function is,

u(η, k) =
H√
2k3

[
1− ik
Ha

]
exp

[ ik
Ha

]
, (7–7)

and the polarization tensor obeys all the same relations as in flat space,

0 = ε0µ = kiεij = εjj and εijε
∗
ij = 1 . (7–8)

Our result is that the inflationary production of MMC scalars has no effect on

dynamical gravitons at one loop order. There is nothing very surprising about this result.

It is exactly what happens in flat space [9] and we have reviewed it in Section 5.2.3.

Although the scalar contribution to the graviton self-energy is enormously more complex

in de Sitter than in flat space, we showed in section 6.2 that all of this complexity can

be absorbed into surface integrations at the initial time. It is plausible that these surface

integrations can be regarded as perturbative redefinitions of the initial state which

involve two scalars and one graviton. The null effect of flat space certainly has this

interpretation, which implies the same for the highest derivative part of the de Sitter

result. What has yet to be proved — and so must be labeled a conjecture — is that the

lower derivative, intrinsically de Sitter parts have the same interpretation. Checking this

requires a computation like that recently completed for the self-interacting scalar [7].

Another way of understanding this result is to consider the number of the MMC

scalars. The one loop corrections we seek to compute represent the response (of either

dynamical gravitons or the force of gravity) to the vast ensemble of infrared scalars

which are produced by inflation. It is simple to show that the occupation number for each
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mode with wave number ~k grows like [49] (as reviewed in the introduction section 1.2.3),

N(k , η) =

(
Ha(η)

2k

)2
(7–9)

This growth is balanced by expansion of the 3-volume so that the number density of

infrared particles with 0 < k < Ha remains fixed,

n(η) =

∫
d3k

(2πa)3
θ(Ha−k)N(k , η) = H

3

8π2
. (7–10)

The constant density of virtual scalars has no effect at all on dynamical gravitons (after

field strength renormalization) [9].

This is the math behind our result; the physics is that ultraviolet virtual scalars affect

gravitons the same as in flat space, and infrared scalars carry too little stress-energy to

have much effect. The effect of ultraviolet scalars is limited, as on flat space, to inducing

higher derivative counterterms. Although primordial inflation produces many scalars,

they are all highly infrared so they interact only weakly with gravtions. This seems

to be why inflationary gravitons have no significant effect on MMC scalars [96]. One

might worry that a very infrared graviton would still suffer some effect from absorbing a

comparably infrared scalar. To understand why this is not so, let us model the process

by simply replacing the graviton’s co-moving wave number k with a new one k ′,

0 = ü(t, k) + 3Hu̇(t, k) +
k2

a2(t)
u(t, k) −→ ü(t, k) + 3Hu̇(t, k) + k ′2

a2(t)
u(t, k) . (7–11)

The effect on the mode function is negligible after both 1/a2 terms have redshifted into

insignificance.

One last project which remained to be completed is to investigate how inflationary

scalars affect the force of gravity. That can be done by solving (6–6) to correct for the

linearized response to a stationary point mass M [71],

h
(0)
00 (x) = a

2 × 2GM
a‖~x‖

, h
(0)
0i (x) = 0 , h

(0)
ij (x) = a

2 × 2GM
a‖~x‖

× δij . (7–12)
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The same reduction procedures we laid out in section 6.2 can be applied in this case

except that:

• The spin zero projector Pρσ(x ′) does not annihilate (7–12); and

• The linearized stress tensor does not vanish.

The computation has been reduced to a single integration which I will complete soon.

It should be noted that the virtual scalars of flat space do induce a correction to the

classical potential [43, 44] which is reviewed in section 5.2.5, and we expect one as well

on de Sitter background. On dimensional grounds the flat space result must (and does)

take the form,

Φflat = −GM
r

{
1 + constant× G

r 2
+O(G 2)

}
. (7–13)

On de Sitter background there is a dimensionally consistent alternative provided by the

Hubble constant H and by the secular growth driven by continuous particle production,

ΦdS = −GM
r

{
1 + constant× GH2 ln(a) +O(G 2)

}
. (7–14)

If such a correction were to occur its natural interpretation would be as a time dependent

renormalization of the Newton constant. The physical origin of the effect (if it is present)

would be that virtual infrared quanta which emerge near the source tend to collapse to it,

leading to a progressive increase in the source.

Both math and physics suggest that inflationary gravitons might do something

interesting to other gravitons. The graviton contribution to the graviton self-energy has

been derived at one loop order [60] so the computation can be made. Of course one

can reduce the effect to a temporal surface term, as we did in section 6.2, but it seems

likely that this surface term will depend upon the observation time η so that it cannot

be absorbed into a perturbative correction to the initial state. The reason for this is that

the graviton contribution contains de Sitter-breaking, infrared logarithms [60], unlike the

scalar contribution. The physical principle involved would be that gravitons possess spin

and even very infrared gravitons continue to interact via the spin-spin coupling which
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doesn’t exist for scalars. This is presumably why inflationary gravitons induce a secular

enhancement of the field strength of massless fermions [97].

Final comment concerns the possible comparison with cosmological data. One

consequence of our computation would be on the tensor component of the anisotropies

in the CMB (Cosmic Microwave Background radiation). This has not been resolved yet

but high precision measurements of the so-called B-modes of the CMB polarization, for

example from the Planck satellite, may allow us to probe it[106, 107]. There are also

three NASA-funded balloon probes set to go up over the course of the next year[108].

None of these measurements would be sensitive to the one loop corrections I am

computing, but they are first steps. On the very long — several decades — term, there

is enough data to resolve one loop corrections from very early proto-structures[109].

The observable is the tensor power spectrum, which is k3/2π2 times the spatial Fourier

transform of < Ω|hTTij (t, 0)hTTij (t,~x)|Ω >. My result is that a single scalar loop does not

give any correction to the graviton mode functions. However as we have discussed in

the previous paragraph, it seems likely that the one loop effects from gravitons might be

significant because gravitons can interact through their spins, which do not redshift.
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